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ABSTRACT
The associative theory of creativity states that creativity is associated with
differences in the structure of semantic memory, whereas the executive theory
of creativity emphasises the role of top-down control for creative thought. For a
powerful test of these accounts, individual semantic memory structure was
modelled with a novel method based on semantic relatedness judgements and
different criteria for network filtering were compared. The executive account
was supported by a correlation between creative ability and broad retrieval
ability. The associative account was independently supported, when network
filtering was based on a relatedness threshold, but not when it was based on a
fixed edge number or on the analysis of weighted networks. In the former case,
creative ability was associated with shorter average path lengths and higher
clustering of the network, suggesting that the semantic networks of creative
people show higher small-worldness.
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Associative and executive accounts of creativity

Current research on the creative process focuses on two seemingly compet-
ing accounts: The first account is the associative theory of creativity (Mednick,
1962). It argues that individual differences in semantic memory structure
influence creative thought in a bottom-up manner (Gruszka & Neçka, 2002;
Kenett, Anaki, & Faust, 2014; Mednick, 1962; Rossman & Fink, 2010; Schilling,
2005). It goes back to Mednick’s (1962) theory, which assumes that creative
individuals are characterised by “flat” (numerous and weakly related associa-
tions to a given concept) rather than “steep” (few, strong associations to a
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given concept) hierarchies in semantic memory. Rossmann and Fink (2010)
concluded that creative individuals may have more associative links in their
semantic memory and can activate remote associative relations faster than
less creative individuals.

The second account is the executive theory of creativity (Beaty & Silvia, 2012;
Benedek, Jauk, Sommer, Arendasy, & Neubauer, 2014; Dietrich, 2004; Martin-
dale, 1995; Mendelsohn, 1976). This account argues for the importance of
top-down cognitive control in the creative process, such as fluid intelligence,
retrieval ability, and specific executive functions (Beaty & Silvia, 2012; Benedek
& Neubauer, 2013; Benedek et al., 2014; Groborz & Neçka, 2003; Jauk, Bene-
dek, & Neubauer, 2014; Lee & Therriault, 2013; Nusbaum & Silvia, 2011; Silvia,
Beaty, & Nusbaum, 2013). According to this view, cognitive control supports
creativity via top-down mechanisms that enable more effective memory
retrieval and strategy implementation.

In both accounts, semantic memory is a key component (Abraham & Bubic,
2015; Benedek & Jauk, in press; Kenett, in press). Semantic memory is the sys-
tem of human memory that stores concepts and facts, regardless of time or
context (McRae & Jones, 2013). However, the way in which semantic memory
is organised into categories and subcategories remains an open question
(Jones, Willits, & Dennis, 2015). In regard to creativity, semantic memory is
either directly related to creative ability via its structural properties (bottom-
up account), or it is the basis upon which executive processes operate (top-
down account). Currently, the few behavioural and computational studies
that have examined the relation between semantic memory structure and
creative ability have not been able to clarify in what way semantic memory
affects creative thought. One potential reason for this is that previous studies
have analysed differences in memory structure at the group level (i.e., low ver-
sus high creative individuals), which may conceal nuanced differences due to
the necessary aggregation across individuals of a group. Therefore, in the
present study, we propose a novel approach to represent semantic memory
structure at the individual level and relate it to measures of creative ability
and intelligence.

Semantic memory structure and creativity

Lately, there has been a growing amount of research empirically examining
the relation between semantic memory structure and creative ability between
low and high creative groups (Beaty, Silvia, Nusbaum, Jauk, & Benedek, 2014;
Benedek & Neubauer, 2013; Kenett et al., 2014; Kenett, Anaki, & Faust, under
review; Kenett, Beaty, Silvia, Anaki, & Faust, 2016). Benedek and Neubauer
(2013) investigated Mednick’s theory by computing associative hierarchies for
groups of low and high creative individuals, which reflected the average asso-
ciation strength of the 10 most common responses to a set of cue words. No
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differences were found between the associative hierarchies of the two
groups. However, high creative individuals showed higher association fluency
(see also Benedek, K€onen, & Neubauer, 2012) and thus were able to generate
a higher proportion of uncommon associative responses within the same
time. Based on these findings, Benedek and Neubauer concluded that low
and high creative individuals do not differ in the structure of their associative
hierarchies, but rather in the ability to fluently access semantic content. They
also acknowledge the possibility that the differences in associative hierarchies
between the two groups may be found in more weakly associated concepts.
Yet, they claimed that the low frequency of these weak associative responses
makes such an analysis difficult to conduct.

Kenett et al. (under review) took a similar approach, and examined the
strength and latencies of associative responses generated by low and high
creative individuals to a set of 96 cue words. The authors classified each of
the associative responses generated to the cue words as a strong, medium,
weak or unique associative response. This was done, for each group indepen-
dently, based on the percentage of the group generating a specific associa-
tive response x as a response to a cue word y (Nelson, McEvoy, & Schreiber,
2004). The results of this study show that high creative individuals are faster
in generating associative responses and provide a higher percentage of
unique and lower percentage of strong associative responses than low crea-
tive individuals. Finally, they found a weak overlap between strong associative
responses generated by the two groups.

Recently, Beaty et al. (2014) examined the involvement of bottom-up and
top-down accounts to creative ability. The authors used latent semantic anal-
ysis (Landauer & Dumais, 1997) to compute semantic distance values of
responses generated by participants during verbal fluency tasks to specific
target words. Average semantic distance was considered as an index of the
structural organisation of semantic memory. This measure, along with several
measures of cognitive ability, was used to examine the contribution of both
bottom-up and top-down processes in creative ability (i.e., divergent think-
ing). The authors found joint effects of average semantic distance and execu-
tive abilities, namely broad retrieval ability and fluid intelligence, on the
fluency and creativity of divergent thinking responses. These findings suggest
the contribution of both semantic structure and executive functions to crea-
tive thought.

Finally, a few studies have examined the relation of semantic memory
structure to creativity through computational neural network models (Kaji�c,
Gosmann, Stewart, Wennekers, & Eliasmith, 2016; Kaji�c & Wennekers, 2015;
Marupaka, Iyer, & Minai, 2012; Marupaka & Minai, 2011; Olteţeanu & Falomir,
2015, 2016). For example, Marupaka and Minai (2011) demonstrate how a
neural network model with small-world characteristics facilitates the most
efficient search process that allows conceptual combinations. According to
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this model, conceptual combination arises through the co-activation of neural
units, which leads to reorganisation of the semantic network (see Marupaka
et al., 2012, for a full description of this model). Current neural network mod-
els have been developed to simulate the processes taking place while solving
Mednick’s Remote Associates Test (RAT) (Kaji�c et al., 2016; Kaji�c & Wennekers,
2015; Olteţeanu & Falomir, 2015). However, all of these models focus on spe-
cific tasks, such as conceptual combinations or the RAT. They do not account
for any possible differences in semantic memory structure between low and
high creative individuals.

The network science approach in the study of semantic memory,
creativity and intelligence

Recent studies adopted methods from network science in order to obtain more
differentiated measures of semantic memory structure (e.g., Faust & Kenett,
2014; Kenett et al., 2014). Network science is based on mathematical graph the-
ory, providing quantitative methods to investigate complex systems as net-
works (Baronchelli, Ferrer-i-Cancho, Pastor-Satorras, Chater, & Christiansen,
2013; Borge-Holthoefer & Arenas, 2010; De Deyne, Kenett, Anaki, Faust, & Nav-
arro, 2016). This approach has been applied in a variety of fields, including
social sciences, biology, technology and infrastructure (Barab�asi, 2012, 2016). A
network is comprised of nodes, which represent the basic unit of the system
(e.g., semantic memory) and links, or edges, that signify the relations between
them (e.g., semantic similarity). At the cognitive level, this approach is mainly
applied to investigate complex systems of language and memory structure.
For example, network science has identified mechanisms of language develop-
ment through preferential attachment (Hills, Maouene, Maouene, Sheya, &
Smith, 2009; Steyvers & Tenenbaum, 2005), has shown how specific semantic
memory network parameters influence memory retrieval (Vitevitch, Chan, &
Goldstein, 2014; Vitevitch, Chan, & Roodenrys, 2012; Vitevitch, Goldstein, &
Johnson, 2016), and provides new insight on the structure of semantic network
of second language in bilinguals (Borodkin, Kenett, Faust, & Mashal, 2016).

Of the various network models developed in network science theory, the
network model that has been widely used to examine complex systems is the
small-world network (SWN) model (Milgram, 1967; Watts & Strogatz, 1998).
An SWN is a network that is characterised by both high local connectivity and
short global distances between nodes, allowing for efficient transfer of infor-
mation. This network type is known as a “small-world” network because every
node is relatively close to other nodes. Analyses of different languages have
consistently shown how different linguistic systems exhibit SWN characteris-
tics (Arbesman, Strogatz, & Vitevitch, 2010; Borge-Holthoefer & Arenas, 2010;
De Deyne & Storms, 2008). These SWN characteristics are now considered fun-
damental characteristics of linguistic systems, which allow for efficient and
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quick retrieval in linguistic information (Borge-Holthoefer & Arenas, 2010).
Common parameters of network structure include the network’s clustering
coefficient (CC), the average shortest path length (ASPL), the “small-world-
ness” (S) and the modularity (Q).

The CC refers to the probability that two neighbours of a node will them-
selves be neighbours (i.e., a neighbour is a node i that is connected through
an edge to node j). The ASPL refers to the average shortest number of steps
needed to be taken between any two pair of nodes. An SWN is characterised
by having a high CC and a short ASPL. To examine whether a specific network
is an SWN, the statistical properties of empirical data are compared to those
of a random null network with the same number of nodes and edges (Bocca-
letti, Latora, Moreno, Chavez, & Hwang, 2006). An additional measure, (S),
quantifies the “small-worldness” of a specific network (Humphries & Gurney,
2008) by computing the ratio between the CC and the ASPL, and it reflects
the extent to which a network is “small-worlded” (a value greater than one
indicates that the network is “small-worlded”). Finally, a network’s modularity,
(Q), examines how a complex system comprised of many nodes and edges,
breaks apart (or partitions) into smaller sub-networks (Fortunato, 2010; New-
man, 2006). The larger the modularity measure, the more the network com-
prised of sub-networks (Newman, 2006). Current research is starting to
highlight the role of modularity in typical and atypical cognitive networks
(e.g., Kenett, Gold, & Faust, 2016; Siew, 2013).

Kenett et al. (2014) used network science methods to directly investigate
Mednick’s (1962) notion of the structural difference between low and high
creative individuals. The authors applied a novel computational method to
extract the semantic memory network organisation of 96 cue words in low
and high creative individuals. This analysis showed that the semantic memory
network of high creative individuals is less rigid than that of low creative indi-
viduals. The semantic memory network of the high creative individuals had a
lower ASPL and Q values and a higher S value as compared to the network of
low creative individuals (Kenett et al., 2014). Lower path lengths between con-
cepts (ASPL) may facilitate a faster search for remote semantic concepts rele-
vant for creative thought (Kenett & Austerweil, 2016; Rossman & Fink, 2010).
Moreover, lower modularity (Q) of networks suggests that semantic networks
do not strongly break apart in sub-communities, which conforms Mednick’s
(1962) notion that creativity should be characterised by flat rather than steep
association hierarchies. Finally, a higher small-worldedness (S) indicates an
effective balance of high network clustering (CC) and low ASPL, which allows
highly efficient processing in semantic networks (Borge-Holthoefer & Arenas,
2010). These findings provide empirical network evidence for Mednick’s the-
ory by showing that high creative individuals have a more flexible semantic
memory network structure. This structure may enable more efficient retrieval
strategies when generating associations.
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Kenett, Beaty, et al. (2016) examined the relation of fluid intelligence, crea-
tive ability and semantic memory structure. Participants completed a seman-
tic verbal fluency task (name as many items as possible from a category, e.g.,
animals) and were divided into four groups based on their performance on
intelligence and creativity measures. The semantic network representation of
the animal category was compared for all groups. These results revealed that
intelligence and creativity are differentially related to semantic memory struc-
ture: intelligence is more related to structural properties (higher ASPL and Q
values) and creativity is more related to flexible properties (higher S value).
Further, this study found that the semantic network of the high intelligence/
high creative group has both properties.

Aims of the present study

The presented studies have provided novel and important insights on the
creative process, and offer empirical support in favour of both the bottom-
up, associative and the top-down, executive accounts of creativity. Clear
conclusions on the role of bottom-up and top-down accounts, however,
are complicated by the fact that individual differences in associative and
executive processes may not be independent. On the one hand, individual
differences in association fluency have been attributed to executive abili-
ties facilitating effective retrieval from semantic memory (Benedek & Neu-
bauer, 2013; Gilhooly, Fioratou, Anthony, & Wynn, 2007) and are
commonly seen as indicator of the intelligence facet of broad retrieval
ability (i.e., Gr; Carroll, 1993; Silvia et al., 2013). On the other hand, it was
proposed that semantic memory structure may affect association fluency
(i.e., flatter association hierarchies should be related to more fluent associa-
tion; Mednick, 1962). Moreover, the computation of semantic network
parameters is often based on free association behaviour and hence may
be affected by association fluency itself. In order to further clarify the role
of associative and executive processes in creativity, we need to consider
both constructs together at the individual level. Previous research was pri-
marily conducted at the group level – low versus high creative individuals.
By representing semantic memory structure at the individual level and
relating it to individual differences in creative ability and executive func-
tions, this issue can be addressed more powerfully.

Currently, only one study has presented an approach to represent an indi-
vidual’s semantic network (Morais, Olsson, & Schooler, 2013). This approach
was based on associative “snow-ball” sample collection, which is extremely
time-demanding (between 30 and 60 consecutive days of data collection per
participant). In this study, we take a step forward in this direction and propose
a new, more efficient approach. Our approach makes use of network science
tools to “reverse engineer” an individual’s semantic network, based on
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semantic relatedness judgements. Kenett, Levi, Anaki, and Faust (in press)
developed a novel semantic judgement task which quantifies semantic dis-
tance as measured with semantic network path length. Path length in a
semantic network represents the amount of steps needed to traverse from
one word in the network to the other. A series of studies examined how
manipulation of path length affects performance in a semantic relatedness
judgement task. These studies found a significant correlation between path
length and subjective judgement of the relatedness strength of the word
pairs. This significant correlation substantiates the relationship between
semantic distance, as measured with path length, and subjective judgement
of associative strength. The approach developed by Kenett et al. (in press)
adds to a growing body of research that combines computational measures
of semantic distance with neurocognitive approaches to examine semantic
processing (Green, 2016; Green, Kraemer, Fugelsang, Gray, & Dunbar, 2010).

In the present study, we capitalise on this relation between semantic
network distance and subjective judgement of relatedness from the oppo-
site direction. We hypothesised that semantic relatedness judgements can
serve as a proxy of semantic distance between concepts in the network of
semantic memory. This rationale is consistent with previous approaches to
construct semantic networks based on semantic proximity data such as
in Pathfinder networks (Schvaneveldt, Dearholt, & Durso, 1988) and the
Netscal algorithm (Hutchinson, 1989). As a notable difference, these previ-
ous approaches have been usually applied to group-based judgements of
semantic similarity or word-association norms, whereas the present
approach defines individual networks based on the semantic relatedness
judgements of single participants. We hence defined a set of 28 concepts
and asked participants to judge the semantic relatedness between all con-
cepts. This resulted in a 28 £ 28 semantic relatedness matrix for each par-
ticipant, which was used to represent their individual semantic memory
structure. Measures of semantic memory structure were then related to cre-
ative ability and intelligence.

The associative account of creativity would be supported by associations
between creative ability and semantic memory structure. Specifically, we
expect a positive correlation between creative ability and CC and S, and a
negative correlation between creative ability and ASPL and Q (Kenett et al.,
2014). The executive account of creativity would be supported by positive
correlations between creative ability and intelligence. Importantly, by consid-
ering individual estimates of network structure and intelligence, we will be
able to test whether they both represent independent predictors of creativity
after controlling for mutual effects, thus providing a stringent test of associa-
tive and executive accounts of creativity.
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Method

Participants

The sample of this study consisted of 89 participants (70% females) with an
average age of 25 years (SD D 8.6). Participants were mainly undergraduate
students (75%) enrolled in the local university, most frequently majoring in
psychology (60%). All participants gave written informed consent.

Tasks and materials

Psychometric measures

Creative ability
Creative ability was assessed with measures of divergent thinking ability
(Runco & Acar, 2012). Participants performed four alternate uses of tasks, a
common measure of divergent thinking (DT), asking them to generate crea-
tive uses for a rope, a fork, a shoe, and a book. For each task they had two
minutes and were instructed to name all the creative uses for the objects
they could think of. As in our previous research, the task was devised and
administered with MATLAB (e.g., Jauk et al., 2014). After the completion of all
DT tasks, participants were asked to review their ideas and to select their
three most creative ideas of each task. All ideas were rated for creativity by
four trained raters on a scale from 0 (not creative) to 3 (very creative). The
interrater-reliability ranged from ICC D .73–.79 for the four DT tasks. DT task
performance was scored for fluency and creativity. DT fluency reflects the
average number of generated ideas across tasks (Cronbach’s a D .92). DT cre-
ativity was scored with the subjective top-scoring method (Benedek,
M€uhlmann, Jauk, & Neubauer, 2013; Silvia et al., 2008). We computed a top-3
score, which reflects the average creativity of generated ideas from the self-
selected three most creative ideas per task. When less than three ideas were
generated in a task, missing ideas were assigned a creativity value of 0. The
subjective top-scoring method was shown to avoid a necessary confound
between DT creativity and DT fluency (Benedek et al., 2013; Silvia et al., 2008).
The internal consistency of the top-3 DT creativity score was Cronbach’s
a D .72.

Fluid intelligence and broad retrieval ability
We assessed fluid intelligence (Gf) and broad retrieval ability (Gr), two highly
relevant intelligence facets in creativity research (Jauk, Benedek, Dunst, &
Neubauer, 2013; Silvia et al., 2013). Gf was measured with a paper–pencil ver-
sion of the Raven Advanced Progressive Matrices test (RAPM; Raven, Raven, &
Court, 1998). Participants had 20 minutes to solve the 36 tasks (Set II), which
was shown to be a valid and more adequate task time to avoid ceiling effects
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in student samples (Hamel & Schmittmann, 2006). The data of two partici-
pants had to be excluded because they failed to perform the task according
to the instructions. The internal consistency of this task was good (Cronbach’s
a D .82). Gr was assessed with two letter fluency tasks (F and S) and two cate-
gory fluency tasks (occupations and names). Task time was two minutes per
task. The average number of responses across the four tasks was used as esti-
mate of Gr (Cronbach’s a D .84).1

Individual semantic networks

Semantic relatedness task
For the estimation of individual semantic networks, we devised a novel
method based on relatedness judgements obtained from a semantic related-
ness task. A semantic network is commonly represented by a set of concepts
(i.e., the network vertices or nodes), and the semantic relatedness between
these concepts is reflected by links (i.e., network edges) between them. In this
study, we constructed individual semantic networks consisting of 28 concepts
that were represented by single words. To ensure a wide variation of semantic
relatedness between concepts, they were selected to cover seven different
semantic categories with four category members each (see Appendix for a
full list of concepts and their category attribution). The strength of relatedness
between these concepts was inferred from self-reported semantic relatedness
judgements (Kenett et al., in press). To this end, participants evaluated the
semantic relatedness of all possible pairings between two different words,
resulting in a total of 378 individual judgements.

The semantic relatedness task was administered with MATLAB. In each
trial, a word pair was randomly selected from the pool of word pairs that had
not yet been evaluated by the participant and that did also not involve a
word that had been evaluated in the preceding trial. The word pair was pre-
sented in the middle of the screen with random order of the two words
within the pair. Below the word pair, a visual analogue scale with a slider was
presented with the poles defined as unrelated and strongly related. The slider
could be freely moved with the computer mouse within the scale to indicate
the perceived degree of semantic relatedness between concepts. In each trial,
the slider was initially positioned in the middle of the scale. Participants were
instructed to give a quick, intuitive judgement regarding semantic related-
ness and to avoid extended rationalising. The evaluation was confirmed with

1For exploratory reasons, we also assessed personality structure with the German Big-Five inventory
Neo-FFI (Borkenau & Ostendorf, 1993), which measures five personality factors (i.e., neuroticism, extraver-
sion, openness, conscientiousness, and agreeableness) with a total of 60 items. As expected openness was
positively correlated with creativity and intelligence measures, but personality was largely uninformative
with respect to network parameters. For the sake of clarity and focus personality measures were thus not
considered in the main analyses.
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a mouse button press. The final slider position corresponded to a semantic
relatedness value ranging from 0 to 1.

Given that these semantic relatedness judgements correspond to semantic
distance in a participants’ semantic memory network (Kenett et al., in press),
these 28£ 28 semantic relatedness judgements can be studied as an adjacency
matrix of a weighted, undirected semantic network. An adjacency (also known
as connectivity) matrix is a means of representing which nodes are adjacent to
which other nodes in the network. That is, we created an n £ n matrix in which
n represents the number of nodes (i.e., 28 concepts), and each cell represents
the relation (i.e., semantic relatedness) between two concepts.

Network filtering. Since most of the edges have small values (weak related-
ness judgements), the relevant information about the network can be
obscured. Several methods have been developed to overcome this obstacle,
either by constructing a sub-graph that captures the most relevant informa-
tion embedded in the original network or by analysing weighted networks.
For this novel type of semantic networks based on relatedness judgements,
there is not yet an established method of network filtering. Previously, we
used the Planar Maximally Filtered Graph (PMFG) method (Kenett et al., 2014;
Tumminello, Aste, Di Matteo, & Mantegna, 2005). In the PMFG method, all
edges are sorted according to the edge weights (in our case, semantic relat-
edness) and then edges are iteratively included (starting from highest) if the
resulting network remains planar up to a total of 3(n ¡ 2) edges. However,
since the semantic relatedness network is quite sparse (i.e., shows a substan-
tial amount of zero judgements), the double criterion of the PMFG method
(i.e., maintain 3(n ¡ 2) non-zero edges as well as planarity of the network)
was only met by less than half of the participants’ data, and the PMFG method
thus seemed inappropriate for our data. Instead, we considered three differ-
ent straightforward methods of network filtering.

The fixed edge number (FEN) method aims to maintain a fixed, high number
of edges in all networks. We chose to maintain the 100 strongest semantic relat-
edness judgements (out of the total of 378) as edges. The criterion of 100 non-
zero relatedness judgements was met by 90% of participants (i.e., 80) and hence
only excluded those nine participants who rarely ever provided non-zero judge-
ments. Notably, this method implies that the actual threshold of minimum relat-
edness (leading to a network edge) varies across participants. Since it may also
seem reasonable to employ the same relatedness threshold across the whole
sample, we implemented a second method of network filtering that required a
fixed minimum relatedness (FMR) of 0.5. This criterion ensures that edges always
correspond to high semantic relatedness, that is, above the mean of the scale.
As a consequence, however, this method leads to a variable number of edges
across participants. We kept all participants with at least 50 edges meeting the
minimum relatedness criterion (n D 79) to ensure robust estimation of network
parameters. In the FEN and FMR methods, the networks were binarised such
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that all selected edges were converted to a uniform weight D 1, and then ana-
lysed as unweighted, undirected networks. As a third method, we also analysed
the structure of weighted, undirected networks (WUN). Here, all 378 edges were
kept but edges are weighted by their judged relatedness. This method corre-
sponds to an implicit way of network filtering that avoids some of the arbitrari-
ness of deciding what counts as an edge. A comparison of findings across these
three methods of network filtering (FEN, FMR and WUN) should be informative
about the robustness of findings, and eventually help to determine which
method is most appropriate for this novel semantic network approach based on
relatedness judgements.

Network parameters. Analyses were performed with the Brain Connectivity
Toolbox for MATLAB (Rubinov & Sporns, 2010). For each semantic network,
the following parameters were calculated: the CC, the ASPL and the network
modularity (Q) (Boccaletti et al., 2006; Newman, 2006). Finally, the S measure
(Humphries & Gurney, 2008) was computed to quantitatively evaluate the
small-world nature of the network (cf. Kenett et al., 2014).

Procedure

Participants were tested in groups of up to six people in a university computer
lab. After giving informed consent and providing general biographical infor-
mation, they performed the semantic relatedness task. This task involved 378
trials and was tiresome. Therefore, the task was divided into four equal blocks
separated by short breaks. After the semantic relatedness task, participants
performed the divergent thinking tasks, the RAPM and the word fluency tasks.
The total experimental session took about 90 minutes. The procedure was
approved by the local Ethics Committee.

Results

Table 1 presents descriptive statistics and correlations for psychometric trait
measures, average semantic relatedness and network parameters for net-
works with FEN, FMR and WUN. The average semantic relatedness between
concepts was 0.28 (SD D 0.11). As expected, the semantic relatedness judge-
ments were much higher when evaluating concepts stemming from the
same semantic category (M D 0.60, SD D 0.24; 42 within-category pairs) than
when evaluating concepts coming from distinct semantic categories (M D
0.24, SD D 0.11; 336 cross-category pairs; t[88] D 31.31, p < .001). The average
semantic relatedness rating showed a small positive association with DT flu-
ency. Additionally, average relatedness showed substantial positive associa-
tions with edge number and further predicted higher CC and lower ASPL and
Q in the FMR and WUN networks.
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DT creativity and DT fluency were both positively correlated with Gr but
not with Gf. The relationship of creativity with network measures depended
on the method of network filtering. When considering network parameter for
FEN and WUN networks, we observed no significant correlations with creativ-
ity, besides a tendency towards small negative correlation between DT flu-
ency and ASPL (FEN: r D ¡.19, p D .09; WUN: r D ¡.16, p D .13). Considering
FMR networks, DT creativity was positively correlated with CC (r D .24, p D
.03) and negatively with ASPL (r D ¡.28, p D .01). Furthermore, in line with
the group-based analysis of Kenett et al. (2014), the correlation between FMR
modularity and DT creativity exhibited a negative trend (r D ¡.17, p D .13).
There were no significant correlations between DT fluency and FMR network
measures. Figure 1 presents an example of the semantic network of a low cre-
ative participant and a high creative participant, based on the three different
approaches. Networks were visualised using the Cytoscape network visualisa-
tion software (Shannon et al., 2003) spring-embedded visualisation algorithm.
In these visualisations, nodes are presented as circles, and the lines represent
the edges (either unweighted or weighted). The small size of the network (28
nodes) makes it hard to identify any differences between the networks. How-
ever, in all three networks of the high creative participant, the majority of
nodes are more densely centred, indicating higher connectivity and lower
path lengths (Figure 1).

As DT creativity was significantly predicted by network structure in FMR
networks (CC and ASPL) as well as by the intelligence facet of retrieval ability
(Gr), we examined whether the network measures remain significant predic-
tors of DT creativity when the effect of Gr is taken into account. We hence
computed a hierarchical regression analysis to predict DT creativity by net-
work measures in a first step, and the intelligence facet Gr in a second step.
Since semantic network measures are highly correlated (FMR: CC and ASPL:
r D ¡.81, p < .01), they were entered stepwise in order to avoid issues with
collinearity. In this first step, only ASPL was included as significant predictor
of DT creativity (adj. R2 D .07, F[1,77] D 6.70, p D .01; see Table 2). After enter-
ing Gr in the second step, ASPL and Gr both significantly predicted DT creativ-
ity (adj. R2 D .15, F[2,76] D 11.20, p < .001; see Table 2). This finding suggests
that semantic network structure defined by FMR and retrieval ability repre-
sent independent, complemental predictors of DT creativity.

From a methodological perspective, it is also interesting to consider the
correlations between the same network measures among the three filtering
methods (Table 1). These correlations were generally positive and ranged
from .04 to .65 for CC, from .09 to .68 for ASPL, from .11 to .16 for S, and from
.32 to .66 for Q. This suggests that the S parameter is most sensitive to the
employed filtering method whereas the Q parameter may be more robust.
Moreover, FMR and WUN methods generally showed the highest correlations
between network parameters whereas correlations with the FEN method
were lower.
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Discussion

The present study employed a novel technique for estimating individual
semantic memory structure, which allowed testing predictions according to
the associative and executive accounts of creativity at the individual level. We
will first discuss findings relevant to these examinations of creativity theory

Figure 1. Network visualisation of example individual semantic networks for a low and a
high creative person (left and right panels, respectively). Networks are represented for
each of the three employed methods of network representation: based on the criterion
of fixed edge number (FEN; top row), the criterion of fixed minimum relatedness (FMR;
middle row), or weighted undirected networks (WUN; bottom row).
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and then turn to methodological considerations regarding the representation
of individual semantic networks.

Testing predictions of associative and executive accounts of creativity

The associative account of creativity assumes that creativity is related to indi-
vidual differences in semantic network structure (Kenett et al., 2014; Mednick,
1962). Using a novel method for constructing individual semantic networks
based on relatedness ratings, parameters of semantic network structure were
computed using three different filtering methods, either using a threshold cri-
terion based on an FEN, based on FMR, and by analysing unfiltered WUN.

Considering the FMR method, DT creativity was positively correlated with
CC and negatively with ASPL, which replicates previous findings by Kenett
et al. (2014) using group-based networks. Furthermore, the correlation
between FMR modularity and DT creativity exhibited an expected negative
trend. These FMR findings suggest that the semantic networks of creative
people are more strongly clustered and show shorter average distances
between concepts and lower modularity in their semantic memory network.
This kind of network structure is particularly indicative of a higher “small-
worldness” (Humphries & Gurney, 2008) and hence suggests that semantic
networks of creative people are more efficiently structured.

For the FEN and WUN networks, we observed only a trend where more flu-
ent people have semantic networks with shorter ASPL. This notion was further
evidenced by a small positive correlation between DT fluency and average
semantic relatedness judgements. This finding is in line with previous work
showing that more creative people perceive stronger semantic relationships
especially between concepts that are largely unrelated (Rossman & Fink,
2010). Rossmann and Fink hypothesised that creative people might “use
shorter associative pathways” (p. 891), a notion which receives first, albeit
weak, empirical support in the present semantic network analyses. Taken
together, we observed support for the associative account when considering

Table 2. Hierarchical regression analysis predicting divergent
thinking (DT) creativity by semantic network structure (FMR
method) and trait measures.

DT creativity

ΔR2 b

Step 1 .08�

ASPL ¡.28
Step 2 .15��

ASPL ¡.26�

Gr .39��

Notes: Step 1: Stepwise; Step 2: Enter. FMR, fixed minimum
relatedness; ASPL, average shortest path length.

�p < .05; ��p < .01.
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FMR networks, whereas associations were weak and non-significant for FEN
and WUN networks.

The executive account of creativity assumes that creativity is related to
individual differences in executive control and intelligence (Benedek et al.,
2014; Dietrich, 2004; Martindale, 1995; Mendelsohn, 1976; Nusbaum & Silvia,
2011). This account was supported by significant positive correlations of
broad retrieval ability (Gr) with both DT creativity and fluency, but there was
no significant relationship with fluid intelligence (Gf) in this study. This miss-
ing Gf correlation was unexpected given the consistent relationship between
Gf and creativity in the past research (Jauk et al., 2013; Nusbaum & Silvia,
2011). Regarding the DT test, an average number of six ideas and a low aver-
age subjective top-scoring rating are very common in this line of research
(e.g., Jauk et al., 2014; Nusbaum & Silvia, 2011; Silvia et al., 2013). It reflects the
difficulty to come up with creative ideas on the spot. This discrepant finding
may possibly be due to the employed adapted version of the matrices task,
which is more speeded, but which was proposed to be particularly adequate
in academic samples (Hamel & Schmittmann, 2006).

The Gr finding is in line with previous research that consistently reported
positive associations between Gr and DT ability (Beaty et al., 2014; Silvia et al.,
2013), as well as with the creativity of generated drawings (Avitia & Kaufman,
2014) and metaphors (Beaty & Silvia, 2013). Gr is an established facet of the
CHC model of intelligence reflecting the effectiveness and flexibility of mem-
ory retrieval (Carroll, 1993) and is commonly seen as an index of executive
ability (Alvarez & Emory, 2006; Gilhooly et al., 2007). Previous studies found
that people generate 12–20 responses in one minute (Gilhooly et al., 2007; Sil-
via et al., 2013), so the observed average response fluency of 26 seems rea-
sonable for two-minute tasks. The findings hence corroborate the view that
executive control (of memory) facilitates creative thought. As a potential alter-
native interpretation, Gr might also be seen to reflect the richness of semantic
representations and hence be an indicator of semantic structure rather than
executive ability. This view, however, was not supported in our data, as we
observed no correlation between Gr and any of the network parameters, but
only between Gr and creativity. Importantly, the employed DT creativity mea-
sure relied on a constant number of the three most creative ideas, which is
largely uncorrelated with response fluency (Benedek et al., 2013).

We hence obtained partial support for the associative account (FMR net-
works, but not FEN or WUN networks) and the executive account of creativity
(Gr, but not Gf) based on correlational findings. In the next step, we examined
the possibility that associative and executive processes may not predict crea-
tive ability independently once their covariance is controlled. This examina-
tion was made possible due to the availability of network parameters at the
individual level. A regression analysis revealed that ASPL and Gr indeed pre-
dict DT creativity independently. CC did not explain unique variance of DT
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creativity beyond these factors, which is likely due to the very high negative
correlation between CC and ASPL. These findings suggest that associative
and executive factors may contribute independently to creativity, even when
accounting for their covariance. This is consistent with previous research
(Beaty et al., 2014; Kenett, Beaty, et al., 2016), and extends it by using meas-
ures of individual semantic network structure based on network science. In
semantic networks with shorter average path length and less clustering, the
spreading of activation may more easily reach remotely related concepts
(Kenett & Austerweil, 2016), while executive processes may facilitate the effec-
tive evaluation and selection of relevant concepts (Benedek, Franz, Heene, &
Neubauer, 2012). Recent neuroscience research has already provided first
insights in how this interplay can be manifested at the level of interacting
brain networks (Beaty, Benedek, Kaufman, & Silvia, 2015; Beaty, Benedek, Sil-
via, & Schacter, 2016). This interpretation, however, is qualified by the fact
that only one out of three methods for network estimation revealed signifi-
cant associations between semantic network structure and creativity (besides
a similar trend for the two other methods) and by a correlation only between
Gr (and not Gf) and creativity in this study. The final conclusion depends on
the validity of the network measures, which is further discussed in the next
sections.

Methodological considerations

The associative account of creativity was only supported when using the FMR
method, but not with the FEN and WUN methods. The ultimate decision on
the validity of the semantic network structure findings hence depends on the
appropriateness of the employed methods for network representation. In the
FEN method, the number of edges is kept equal across networks. As a poten-
tial benefit of this method, it ensures that differences in network structure
can be attributed to differences in the actual organisation of network edges
rather than to their mere number. Network science commonly adheres to this
method, and it was also employed in previous research on creativity using
the PMFG filter (Kenett et al., 2014; Kenett, Beaty, et al., 2016; van Wijk, Stam,
& Daffertshofer, 2010). In contrast, the FMR method relies on filtering based
on an FMR threshold. This method ensures that edges in individual networks
will always correspond to high semantic relatedness. This criterion, however,
also implies that the number of edges varies across networks, and the edge
count was found to be substantially correlated with all network parameters
(see Table 1). As a consequence, network parameters are highly correlated
with the average semantic relatedness for this method: a person giving
higher average relatedness evaluations will have more significant edges in
the FMR network, which results in higher CC and lower ASPL estimates.
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We assumed that the third method, weighted undirected networks, might
overcome some of the arbitrariness of the FEN and FMR methods. This
method does not impose a specific threshold but instead considers the full
available data in terms of weighted edges. The correlational data showed
that WUN network parameters, similar to FMR, are again highly dependent on
average semantic relatedness (see Table 1). This may also explain why WUN
network parameters were substantially correlated with FMR parameters but
not with FEN parameters. Even though WUN network representations appear
more similar to FMR than to FEN, WUN did not replicate the significant corre-
lations between network structure and creativity. Therefore, the relationship
between creativity and network structure can be questioned in our data,
because it was not observed with two out of three filtering methods. Future
research is needed to determine whether FMR network representations are
particularly sensitive to creativity-related aspects of network structure or
whether this correlation was potentially due to type 1 error associated with
the large number of tests when considering different network parameters
and filtering methods. Such research should also examine alternative meth-
ods to collect semantic relatedness judgements, such as binary decisions
(related/unrelated; e.g., Kenett et al., in press), or choosing a word that is the
least similar to two other out of a triplet of words (Connolly, Gleitman, &
Thompson-Schill, 2007; De Deyne, Navarro, Perfors, & Storms, 2016).

We also explored some additional alternatives for network construction to
examine the robustness of findings. First, we examined effects when filtering
networks first with FEN or FMR and then performing weighted network analy-
ses. These weighted analyses on FEN and FMR networks yielded essentially
the same findings as the unweighted analyses: no significant association of
network parameters with creativity measures for weighted FEN, and for
weighted FMR, a significant negative correlation with ASPL and a positive cor-
relation with CC (now by trend) remain. Second, we examined the effect of
standardising semantic similarity ratings in WUN networks to account poten-
tial for individual differences in using the rating scale. To this end, the ratings
of each participant were rescaled to show a minimum of 0 and standard devi-
ation of 1. Again, this transformation did not affect findings for the WUN
method, as all correlations with creativity measures remained non-significant.
These explorative analyses corroborate the robustness of the effects for the
different filtering methods, but since they did not contribute new findings,
we only presented the main findings for FEN, FMR and WUN methods, which
represent the most principled approach from different perspectives.

Limitations and future directions

Some potential limitations of this research need to be mentioned. First, the
number of network nodes in this study was rather low. Previous research has
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used considerably larger networks of 96 concepts or more (De Deyne &
Storms, 2008; Kenett et al., 2014; Kenett, Kenett, Ben-Jacob, & Faust, 2011;
Morais et al., 2013). However, this was either done based on group data
(Kenett et al., 2014), or for extensively collected individual data leading to
non-identical network nodes (Morais et al., 2013). The present study employed
28 nodes which involved a total of 378 pairwise evaluations. If we wanted to
use, for example, 96 nodes, the method of pairwise comparisons would already
yield a total of 4560 evaluations per subject. Therefore, even though the novel
method is efficient in directly estimating semantic networks from semantic
relatedness ratings, it still becomes time-consuming when larger networks are
considered. Future research should aim to further advance these approaches
and examine semantic memory structure at the individual level in larger
semantic networks (e.g., Zemla, Kenett, Jun, & Austerweil, 2016). Such research
will contribute to our understanding of the relation between semantic memory
structure and cognitive phenomena (De Deyne et al., 2016).

Second, we only examined linear associations between creative ability
and network measures. However, it seems possible that extreme values in
network characteristics are dysfunctional, and creativity is rather associated
with moderate or somewhat increased expressions. For example, Faust and
Kenett (2014) proposed a cognitive theory on the relation between the struc-
ture of semantic memory and typical and atypical thought processes. This
theory proposes a cognitive continuum of semantic memory structure. On
one extreme of this continuum lie rigid, structured semantic memory net-
works, such as those exhibited in individuals with Asperger syndrome
(Kenett, Gold, & Faust, 2016). On the other end of this continuum lie chaotic,
unstructured semantic memory networks, such as those conceptualised to
characterise individuals with schizophrenia (Spitzer, 1997). According to this
theory, efficient semantic processing is achieved via a balance between rigid
and chaotic semantic memory structure (Faust & Kenett, 2014). Of course,
nonlinear relationships could also be assumed for the association between
creativity and intelligence (Abraham, 2014; Jauk et al., 2013; Karwowski et al.,
2016). A powerful detection of nonlinear relationships with unknown inflec-
tion points can be achieved by means of the segmented regression analysis
(Mueggo, 2008) or necessary condition analysis (Dul, 2016), but these meth-
ods require larger sample sizes in order to provide robust estimates. Future
research hence may try to test theories on nonlinear relationships between
semantic memory structure and typical vs. atypical modes of thought.

Third, future research may aim for a more differentiated assessment at the
ends of executive ability. This study measured Gf and Gr, two proxies of exec-
utive control that are commonly employed in this line of research (Gilhooly
et al., 2007; Jauk et al., 2013; Silvia, 2015). Regarding Gr, it cannot be excluded
that retrieval abilities partially depend on the organisation of semantic net-
works, which would imply a confound between executive ability and network
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structure. While we did not find empirical support for this confound, this
potential issue could be addressed in future research by assessing specific
executive abilities such as working memory capacity, shifting ability or inhibi-
tion, which should be particularly informative of the role of executive control
in creative thought (Benedek et al., 2014).

Finally, models of semantic network structure can only represent coarse
approximations of the actual organisation of semantic memory (Jones et al.,
2015). Concepts can be associated in many ways (e.g., phonological or visual
associations) and the organisation of memory is a major source of individuality
that is hardly captured by semantic networkmodels. The present approach takes
a step towards the acknowledgement of individuality of networks by modelling
network structure based on individual judgements rather than group-based data.

Conclusions

The present study introduced a new, efficient approach for the representation
of individual semantic networks based on relatedness judgements, which was
applied to a test of associative and executive accounts of creativity. Using this
novel approach, we found conditional evidence in support of both accounts
of creativity: The role of associative processes was supported only for seman-
tic networks based on FMR; the role of executive ability was supported by
substantial correlations between DT ability and Gr. This study thus adds to
the growing evidence on associative and executive contributions to creativity.
Moreover, it demonstrates the feasibility and benefits of employing a network
science approach in the analysis of individual semantic network structure, but
also points to the need to further systematically examine and refine available
methods for the representation of individual semantic networks.
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Appendix

Table A1. Stimulus words used in the semantic relatedness task (English translation of
German stimuli in brackets).
Category Concepts

Animals Hund, Katze, Vogel, Kuh (dog, cat, bird, cow)
Nature Berg, Baum, Fluss, Sonne (mountain, tree, river, sun)
Food Fleisch, K€ase, Wasser, Brot (meat, cheese, water, bread)
Tools Hammer, Besen, Stift, Messer (hammer, broom, pen, knife)
Furniture Bett, Tisch, Kasten, Lampe (bed, table, cupboard, lamp)
Clothes Schuh, Hose, Hut, Schirm (shoe, trouser, hat, umbrella)
Container Eimer, Flasche, Sack, Dose (bucket, bottle, sack, can)
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