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Abstract
Schizotypy is a multidimensional construct that provides a useful framework for understanding the etiology, development, and
risk for schizophrenia-spectrum disorders. Past research has applied traditional methods, such as factor analysis, to uncovering
common dimensions of schizotypy. In the present study, we aimed to advance the construct of schizotypy, measured by the
Wisconsin Schizotypy Scales–Short Forms (WSS-SF), beyond this general scope by applying two different psychometric
network filtering approaches—the state-of-the-art approach (lasso), which has been employed in previous studies, and an
alternative approach (information-filtering networks; IFNs). First, we applied both filtering approaches to two large, independent
samples of WSS-SF data (ns = 5,831 and 2,171) and assessed each approach’s representation of the WSS-SF’s schizotypy
construct. Both filtering approaches produced results similar to those from traditional methods, with the IFN approach producing
results more consistent with previous theoretical interpretations of schizotypy. Then we evaluated how well both filtering
approaches reproduced the global and local network characteristics of the two samples.We found that the IFN approach produced
more consistent results for both global and local network characteristics. Finally, we sought to evaluate the predictability of the
network centrality measures for each filtering approach, by determining the core, intermediate, and peripheral items on theWSS-
SF and using them to predict interview reports of schizophrenia-spectrum symptoms. We found some similarities and differences
in their effectiveness, with the IFN approach’s network structure providing better overall predictive distinctions. We discuss the
implications of our findings for schizotypy and for psychometric network analysis more generally.
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Schizotypy is a multidimensional construct that encompasses the
subclinical and clinical continuum of schizophrenia-spectrum

disorders. At its most extreme manifestations, schizotypy is
expressed as full-blown schizophrenia. Converging evidence
across behavioral, cognitive, neurobiological, and ambulatory
assessment studies supports the overlap of the schizotypy con-
tinuum and schizophrenia-spectrum disorders (e.g., Ettinger,
Meyhöfer, Steffens, Wagner, & Koutsouleris, 2014; Kwapil &
Barrantes-Vidal, 2015). In addition, schizotypy provides early
detection of schizophrenia-spectrum liability in nonclinical sam-
ples, prior to the onset of psychosis, medication, and stigmatiza-
tion (Kwapil & Barrantes-Vidal, 2015). Therefore, schizotypy
offers a promising framework for understanding the etiology,
development, and expression of schizophrenia-spectrum disor-
ders. Several traditional approaches, such as confirmatory factor
analysis, have been used to examine the dimensional structure of
schizotypy, typically identifying two to five underlying dimen-
sions, with positive, negative, and disorganized schizotypy as the
most replicated factors (Gross, Mellin, Silvia, Barrantes-Vidal, &
Kwapil, 2014; Kwapil, Barrantes-Vidal, & Silvia, 2008; Raine&
Benishay, 1995; Wuthrich & Bates, 2006). Despite these
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findings, traditional approaches do not account for the nature of
the interactions taking place between items that contribute to
schizophrenia-spectrum liability.

An increasingly popular approach in studying psychopa-
thology is through network science (Borsboom, 2017). The
network approach defines psychopathological disorders and
personality traits as complex systems—phenomena that
emerge from the causal interactions between symptoms and
trait nuances (Borsboom&Cramer, 2013; Schmittmann et al.,
2013). Such an approach can offer a unique perspective for
examining schizophrenia-spectrum liability by defining
schizotypy items as interacting symptom nuances, and deter-
mining which items are most central to the construct.
Therefore, in the present study, we apply the network ap-
proach to examine the multidimensional structure of
schizotypy via the 60-item Wisconsin Schizotypy Scales–
Short Forms (WSS-SF; Winterstein et al. , 2011).
Furthermore, we employ interview measures to evaluate
how the WSS-SF’s network structure associates with
interview-rated symptom measures.

Because the WSS-SF contains 60 items, the WSS-SF
network will be convoluted with up to 1,770 possible
connections—that is, a possible connection between every
item. Therefore, filtering is needed to minimize spurious
relations (multiple comparisons problem) and to increase
interpretability (induce parsimony). To examine the net-
work structure of schizotypy (via the WSS-SF), we apply
two network filtering approaches to minimize spurious
edges and maximize interpretability. One filtering ap-
proach, the lasso (Epskamp, Borsboom, & Fried, 2018), has
been commonly applied in psychopathology research. The
other filtering approach, Information Filtering Networks
(IFN), has been previously applied to cognitive and neural
networks (Kenett, Anaki, & Faust, 2014; Tewarie, van
Dellen, Hillebrand, & Stam, 2015). Although the lasso net-
work filtering approach has become popular in psychopatho-
logical research, little attention has been given to the limita-
tions of this approach, such as biased comparability, reduced
reproducibility, and arbitrary thresholding (Barfuss, Massara,
Di Matteo, & Aste, 2016; Forbes, Wright, Markon, &
Krueger, 2017; van Wijk, Stam, & Daffertshofer, 2010).
Consequently, we compare the performance of these two fil-
tering approaches using two large cross-sectional datasets of
the WSS-SF, and we conclude that the IFN-based filtering
approach can circumvent some of the limitations of the pop-
ular lasso-based filtering approach.

Wisconsin Schizotypy Scales–Short Forms

The WSS-SF, a widely used set of scales, measures pos-
itive and negative schizotypy. The questionnaire includes
two negative schizotypy subscales—Physical Anhedonia

(diminution of sensory experiences; L. J. Chapman,
Chapman, & Raulin, 1976) and Revised Social
Anhedonia (disinterest in social experiences; Eckblad,
Chapman, Chapman, & Mishlove, 1982) scales—and
two posi t ive schizotypy sub-scales—Perceptual
Aberration (distortions of body image; L. J. Chapman,
Chapman, & Raulin, 1978) and Magical Ideation
(delusions and odd beliefs; Eckblad & Chapman, 1983)
scales. The traditional factor structure of the WSS-SF has
a positive and negative schizotypy factor, with the social
anhedonia scale loading onto both factors (Gross, Silvia,
Barrantes-Vidal, & Kwapil, 2015; Kwapil et al., 2008).

Kwapil, Barrantes-Vidal, and Silvia (2008) reported that
positive and negative factors are differentially associated with
interview measures of symptoms and impairment. Positive
schizotypy is related to reports of psychotic-like experiences,
substance abuse, mood disorders, and hospitalization.
Negative schizotypy is associated with negative and schizoid
symptoms, and the decreased likelihood of intimate relation-
ships. Both positive and negative schizotypy are linked to
poorer overall functioning and to paranoid and schizotypal
symptoms (Gross et al., 2015; Kwapil et al., 2008).
Furthermore, elevated scores on both dimensions are associ-
ated with increased liability of schizophrenia-spectrum disor-
ders and are related to psychopathology, personality, and im-
paired social functioning (Barrantes-Vidal et al., 2013).
Therefore, this factor structure of the WSS-SF appears to be
highly reliable and valid, as shown across multiple studies
(Gross et al., 2014; Kwapil et al., 2008; Kwapil, Ros-
Morente, Silvia, & Barrantes-Vidal, 2012).

Although the factor structure and validity of the WSS-SF
have been investigated by traditional methods, a clearer picture
of how these items interact with each other and the importance
of their interactions is still lacking (Kwapil & Barrantes-Vidal,
2015). For example, despite social anhedonia’s positive load-
ings onto positive schizotypy, there has been little research on
which positive schizotypy scale it’s most related to. A factor
analysis of the Schizotypal Personality Questionnaire (Raine,
1991), social anhedonia, perceptual aberration, and magical
ideation scales suggests that the perceptual aberration scale
could be connected to impaired social functioning (Wuthrich
& Bates, 2006). Moderate correlations between social anhedo-
nia and perceptual aberration seem to support this idea, howev-
er, magical ideation is also shown to be moderately related
though to a lesser extent (Kwapil et al., 2008). Thus, an open
question is what items of social anhedonia are the most con-
nected to positive schizotypy—and to which scale? Another
question is what items are more central to the construct? Are
these items more related to clinical symptoms and impairment
than less central items?

Investigating the underlying structure of the WSS-SF
should provide clearer distinctions of the schizotypy construct
it measures (Kwapil & Barrantes-Vidal, 2015), and guide the
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development of future schizotypy scales by identifying items
most central to the schizotypy construct measured by the
WSS-SF (Gross et al., 2014; Kwapil, Gross, Silvia, Raulin,
& Barrantes-Vidal, 2017). Moreover, identifying items that
are at the core of schizotypy measurements can improve the
detection and diagnosis of schizophrenia-spectrum psychopa-
thology (Keshavan, Nasrallah, & Tandon, 2011).
Psychometric network analysis provides an avenue to directly
investigate connections within and between scales as well as
the ability to determine which items are most central to the
WSS-SF schizotypy construct.

Psychometric network analysis

The computational field of network science has greatly ad-
vanced the understanding of complex systems (Barabási,
2016). Such an approach is increasingly applied at the cogni-
tive and psychological levels to quantitatively study cognitive
phenomena in both typical and clinical populations
(Baronchelli, Ferrer-i-Cancho, Pastor-Satorras, Chater, &
Christiansen, 2013; Isvoranu et al., 2017; Karuza,
Thompson-Schill, & Bassett, 2016). Recent research has ap-
plied psychometric networks (Epskamp, Maris, Waldorp, &
Borsboom, in press) to investigate the intricate interactions of
psychopathology and personality (Costantini et al., 2017). The
network perspective offers a new conceptualization of psy-
chopathology that takes the form of mutual, interacting symp-
toms through which disorder arises (Borsboom, 2017;
Borsboom & Cramer, 2013; Fried et al., 2017).

Although network psychometric analysis can investigate
the intricate interactions between the items of the WSS-SF,
interpreting these interactions can be difficult. Networks con-
tain multiple connections across all possible pairs of variables
(e.g., symptoms, items) included in the model and therefore
are likely to have spurious edges (i.e., multiple comparisons
problem). Thus, filtering is necessary to minimize spurious
connections and to increase the interpretability of the network.
This, however, introduces a problem known as sparse struc-
ture learning (Zhou, 2011): How best to reduce the complex-
ity and dimensionality of the network while retaining relevant
information? To address this problem, different approaches
have been developed with the aim of extracting meaningful
and parsimonious models (Friedman, Hastie, & Tibshirani,
2008; Molinelli et al., 2013; Zhou, 2011).

Regression-based filtering approach

To date, regression-based filtering methods—removing edges
on the basis of statistical significance or regressing each var-
iable over all other variables—have dominated the psycho-
metric network literature (Epskamp et al., 2018; Fried &

Cramer, 2017; van Borkulo et al., 2014). Several different
regression-based approaches have been developed, including
the removal of edges below a certain threshold (Borsboom &
Cramer, 2013; McNally et al., 2015), false discovery rate
(Bringmann, Lemmens, Huibers, Borsboom, & Tuerlinckx,
2015; Bringmann et al., 2013), and the most widely used
approach, the least absolute shrinkage and selection operator
(lasso; Epskamp et al., 2018; van Borkulo et al., 2014).

The lasso filtering approach (Friedman et al., 2008;
Tibshirani, 1996) minimizes spurious edges by using fully
regressed coefficients (i.e., one variable regressed over all
others) and shrinking small coefficients to zero through the
application of an ℓ1-regularization penalty on the estimation of
the inverse covariance matrix (Barber & Drton, 2015;
Ravikumar, Wainwright, & Lafferty, 2010). The ℓ1-penalty
is determined by the Extended Bayesian Information
Criterion (EBIC; Chen & Chen, 2008), which controls for
false positives. Because of this, the lasso approach excels at
preventing model overfitting, leading to better specificity
(Epskamp & Fried, 2016). In dichotomous data, like that of
theWSS-SF, the lasso approach is applied via the Ising model.
The Ising model iteratively regresses one variable, using lo-
gistic regression, on all other variables and shrinks small co-
efficients to zero (van Borkulo et al., 2014).

The regularized fully regressed coefficients of the lasso
induce parsimony by retaining fewer—sparser—connections
in the network (Epskamp & Fried, 2016). Furthermore, these
connections represent conditionally dependent variables: they
are the association between two variables after controlling for
all other variables in the network, and the lack of a connection
represents conditional independence between two variables.
This conditionality grants the possibility of a causal pathway
existing between connected nodes (Epskamp & Fried, 2016).
Thus, the advantages of the lasso approach are that the net-
work specificity is high, the resulting network is sparse and
more interpretable, and the connections can be interpreted as
possible casual pathways between variables.

Although the lasso approach is state-of-the-art, with new
algorithmic techniques constantly being developed
(Costantini et al., 2017; Danaher, Wang, & Witten, 2014;
Friedman et al., 2008; Ravikumar, Wainwright, Raskutti, &
Yu, 2011), its limitations are receiving a growing amount of
attention (Barfuss et al., 2016; Forbes et al., 2017; Guloksuz,
Pries, & van Os, 2017; Wichers, Wigman, Bringmann, & de
Jonge, 2017). The first limitation is the comparability of lasso-
based networks between cross-sectional samples, and between
clinical and nonclinical samples, is often biased because the
number of edges included in lasso-based networks is a func-
tion of sample size—smaller samples retain fewer edges than
larger samples (Epskamp & Fried, 2016; Fried et al., 2017).
This variation in edge densities—the proportion of edges
retained in the network over all possible edges—alters the
structure of the network, making cross-sectional and
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psychopathological differences prone to be confounded with
differences in edge density (Tewarie et al., 2015; van Wijk
et al., 2010). For example, when a greater number of edges
are in the network, the clustering coefficient (CC; the extent to
which two neighbors of a node will be neighbors themselves)
increases and the average shortest path length (ASPL; the
mean shortest distance over all pairs of nodes) decreases.
This means that in twoWSS-SF networks node A (e.g., symp-
tom A) could be significantly closer to (or further away from)
node B (e.g., symptom B), suggesting that the potential of
node A to influence node B has been altered. Therefore, dif-
ferences in the ASPL and CC have the potential to meaning-
fully alter the interpretation of a symptom’s potential to influ-
ence other symptoms. These attributes of networks are con-
sidered global characteristics because theymeasure the overall
structure of the network.

Traditional psychometric network analysis has given little
attention to these global characteristics and have instead fo-
cused on local network characteristics termed as centrality
measures—measurements of a node’s influence in the net-
work. Notably, network centrality measures, such as between-
ness centrality (the extent a node lies on paths between other
nodes) and closeness centrality (average distance from all oth-
er nodes), are based on the distances between nodes in the
network and are influenced by variation in edge density
(Stam et al., 2014). Because edge densities alter the ASPL,
varying distances between nodes, it is likely that the reproduc-
ibility of betweenness and closeness centrality are also affect-
ed. Indeed, a recent article opted to only discuss node
strength—the sum of all edge weights connected to a
node—because of the low reliability often reported for be-
tweenness and closeness centrality measures (Fried et al.,
2017). Considering that only a few studies have examined
global network characteristics (Boschloo, Schoevers, van
Borkulo, Borsboom, & Oldehinkel, 2016; Costantini et al.,
2017), it is possible that the low reliability of these centrality
measures is related to differences in global network character-
istics such as the ASPL.

In addition to decreased reliability of betweenness and
closeness centrality measures, the average degree—the mean
number of connections a node has in the network—of the
network could also be altered due to differences in edge den-
sity (van Wijk et al., 2010). Consequently, this has the poten-
tial to influence the measurement of node strength by varying
the amount of edges that are contributing to the sum of the
edge weights. Moreover, greater edge densities could include
smaller or larger edge weights, which would alter the average
connectivity—mean strength of the edge weights in the net-
work (De Schryver, Vindevogel, Rasmussen, & Cramer,
2015). Therefore, differing edge densities inevitably lead to
heterogeneity in global and local (i.e., centrality) network
measures, compromising comparability and reducing repro-
ducibility. For the WSS-SF, different sample sizes mean that

the lasso-based networks would have a different edge density,
leading to different network structures despite measuring the
same questionnaire. In short, the global and local network
characteristics of the lasso-based networks have variable com-
parability and reproducibility across independent samples be-
cause they are sample size dependent (but see Costantini et al.,
2017; van Borkulo et al., 2015).

Another potential pitfall is that conditional independence
networks such as lasso-based networks tend to have a greater
amount of measurement error—fully regressed coefficients
raise the potential of edges between highly correlated vari-
ables to be arbitrarily dropped. For example, a symptom net-
work of people scoring high in schizophrenia-spectrum symp-
toms would have high scores on many of the symptom mea-
sures and therefore have small variation in the response pat-
terns between each symptom. Because each symptom is
regressed over all others, it’s likely that the shared variance
between these high scores will be removed, thereby leaving
some symptoms completely disconnected. It’s unlikely that
these symptoms are truly unrelated or disconnected from
one another. Therefore, regression-based approaches that in-
duce conditional independence via fully regressed coefficients
can reduce the comparability and reproducibility between
samples (Forbes et al., 2017).

The shrinkage of correlations below a certain threshold also
contributes to reduced reproducibility because variables can
be eliminated on the basis of statistical significance rather than
theory. For example, some variables or factors may be consis-
tently found to be weakly related but are implicated by theory
to be intrinsic in the construct’s conceptual hierarchy. Both
fully regressed coefficients and the arbitrary selection of a
threshold contain the possibility of ignoring hierarchical pat-
terns in the data that are relevant in psychopathological and
personality phenomena (Barfuss et al., 2016; Markon,
Krueger, & Watson, 2005; McCrae, 2015). For instance, the
WSS-SF has relations between positive and negative
schizotypy that are relatively weak but are consistent with
theory and are modeled in the traditional factor structure
(Gross et al., 2015). Therefore, it is possible that connections
between the two WSS-SF schizotypy factors would not repli-
cate or that the factors could be arbitrarily separated, despite
theoretically being bridged by the social anhedonia scale.

Despite the many different network filtering approaches
that exist, so far only regression-based filtering approaches
have been applied in the psychometric network literature
(Epskamp et al., 2018; Fried & Cramer, 2017; van Borkulo
et al., 2014). Thus, although the lasso approach is state-of-the-
art, alternative filtering approaches may circumvent its poten-
tial pitfalls, such as biased comparability, reduced reproduc-
ibility, and the elimination of hierarchical information
(Barfuss et al., 2016; Forbes et al., 2017; Tewarie et al.,
2015). In the present research, we investigated an alternative
filtering approach, Information Filtering Networks (IFN;

Behav Res



Aste, Di Matteo, & Hyde, 2005; Barfuss et al., 2016;
Mantegna, 1999; Massara, Di Matteo, & Aste, 2016;
Tumminello, Aste, Di Matteo, & Mantegna, 2005), which is
based on topological (structural) constraints. The IFN ap-
proach may be able to overcome some of the limitations that
are found in the lasso and regression-based approaches.

Information filtering networks

The IFN approach applies a constraint on the structure of the
network that reduces it to a subnetwork, which retains the
strongest zero-order correlations from the original network.
This constraint retains a specific number of connections with
defined global topological properties. Two main methods of
the IFN approach are the minimum spanning tree (MST;
Mantegna, 1999) and the planar maximally filtered graph
(PMFG; Tumminello et al., 2005). The MST sorts all edge
weights (i.e., correlations) between nodes in a network in a
descending order and adds the largest possible edge weight to
two nodes such that all the nodes in the network are connected
without forming cliques—a set of connected nodes. Thus, the
MST method retains the most significant connections in the
network so that each node has at least one connection to one
other node (n – 1 edges). TheMST has been shown to produce
meaningful hierarchical structures in financial systems
(Mantegna, 1999) and to be less biased when comparing
within- and between-sample neural networks because it
avoids some of the methodological limitations (such as those
discussed earlier) of other approaches (Tewarie et al., 2015).

The PMFG method similarly sorts edge weights between
nodes in a network in a descending order and adds the largest
edge weight between two nodes one by one while constraining
the subnetwork to be planar—the subnetwork can be represent-
ed in a way that no edges overlap with one another (Aste et al.,
2005; Tumminello et al., 2005). This procedure reveals a sub-
network—a subset of connections (3n – 6 edges) from the
original network that contain the most important information
(correlations) from the original network. The subnetwork is
composed of three- and four-node cliques (i.e., a triangle and
tetrahedron, respectively). From these cliques, a nested hierar-
chy develops: dimensionality is reduced in a deterministic man-
ner while retaining local information and the global hierarchical
structure of the original network (Song, Di Matteo, & Aste,
2011, 2012). In psychology, the PMFG method has been ap-
plied to investigate and compare the structure of semanticmem-
ory in typical and clinical populations (Borodkin, Kenett, Faust,
& Mashal, 2016; Kenett et al., 2014; Kenett, Gold, & Faust,
2016; Kenett et al., 2013).

More recently, the triangulated maximally filtered graph
(TMFG; Massara et al., 2016) method was introduced. Like
the PMFG method, the TMFG method filters the network by
maintaining planarity, retaining 3n – 6 edges. However, the

way in which the TMFG method adds nodes and edges is
more efficient, and it produces comparable or better results
than the PMFG method (Massara et al., 2016). This modified
construction adds a node to the center of the three-node
cliques by using a score function that maximizes the sum of
the three connecting edge weights. With this addition, the
three-node cliques become four-node cliques, which possess
a chord—an edge that is not part of the clique but connects
two nodes in the clique, forming two triangles, thus generating
what is called a chordal network (Lauritzen, Speed, &
Vijayan, 1984; Massara et al., 2016).

The advantage of chordal networks is that they perfectly
represent the independence assumptions of Markov (i.e., bidi-
rectional or undirected relations) and Bayesian (i.e., direction-
al relations) networks (Koller & Friedman, 2009). This means
that there exists a directed network model with conditional
independencies identical to those in the undirected network
as well as a representation of the edges in the network that can
be reduced to a directed network (see Lauritzen &
Spiegelhalter, 1988, for more technical details; Pearl, 2014).
In this way, a chordal network allows a representation of the
whole joint probability distribution and embeds conditional
independence within the network structure (Darroch,
Lauritzen, & Speed, 1980). Thus, the interpretation of the
TMFG method and the lasso approach are equivalent. One
limitation of chordal networks, however, is that they may
add unnecessary edges in order to satisfy the chordal property
(Spiegelhalter, 1987).

Both the IFN and lasso approaches aim to infer a
probability distribution that maximizes the likelihood of the
observations. Indeed, Barfuss et al. (2016) show that both
approaches produce a multivariate normal distribution with
the sparse inverse covariance matrix and their performances
can be directly compared by comparing the values of their
likelihoods in a training dataset to a testing dataset. The main
difference between the two approaches is that the IFN aims to
maximize the likelihood by retaining the largest correlations,
whereas the lasso uses a penalizing term that favors sparsity in
the inverse covariance matrix. Thus, IFN networks avoid a
potential pitfall of the lasso approach: they use zero-order
correlations, instead of fully regressed coefficients, when es-
timating the conditional independence structure. This means
that the reliability of network measures between samples
should be greater in IFN-based networks because zero-
order correlations are more stable than fully regressed co-
efficients (Forbes et al., 2017).

Importantly, the IFN approach avoids another pitfall found
in regression-based methods: reduced comparability between
samples. Because the number of edges is kept constant and
does not vary on the basis of sample size, network measures
are less biased when attempting to compare between cross-
sectional or clinical and non-clinical samples (Tewarie et al.,
2015; van Dellen et al., 2015). In the TMFG method, for
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example, the WSS-SF network, with 60 variables, will always
have 174 edges (3n – 6 edges). Thus, although sample size
will likely affect the reliability of each network measure’s
estimate, differences in the network measures will be related
to sample heterogeneity (e.g., psychopathological expression)
rather than differences in edge density. In contrast, edge den-
sity in the lasso approach varies with sample size, so differ-
ences in network measures are more likely to be confounded
with edge density and sample heterogeneity. Furthermore, in
the lasso approach, edge density is typically expected to be
greater in clinical samples than in nonclinical or remitting
samples (van Borkulo et al., 2015), but unless the sample sizes
are exactly equal, it’s unclear whether the differences in edge
density and networkmeasures are due to differences in sample
size, psychopathological expression, or both.

A final advantage of the IFN approach is the development
of a hierarchical structure, which complements the structure of
many psychopathological and personality phenomena
(Markon et al., 2005; McCrae, 2015). This makes IFN-based
networks ideal for determining the dimensional nature of the
WSS-SF and other psychometric questionnaires because they
form a conceptual hierarchy from local connections (items) to
global structures (scales, phenomena). For example, items and
clusters of items in the WSS-SF represent characteristics that
are consistent with symptoms of schizophrenia-spectrum dis-
orders. In this way, WSS-SF items measure overlapping
symptom nuances (e.g., BSometimes I have had feelings that
I am united with an object near me^), which form symptom
clusters that are representative of a single feature (e.g., uniting
percepts with body boundaries) of a larger symptom (e.g.,
somatic delusions). Although beyond the scope of this article,
some clustering techniques do outperform traditional methods
of hierarchical clustering, which can be used on the IFN net-
works to easily extract this hierarchical information
(Musmeci, Aste, & Di Matteo, 2015; Song et al., 2011,
2012; Yu et al., 2015).

The present research

One aim of the present study was to analyze the network
structure of the WSS-SF and to demonstrate the feasibility
of applying the IFN approach in psychometric network anal-
ysis. We first applied both lasso and IFN network filtering
approaches to analyze the network structure of the WSS-SF
in two large, independent samples. We sought to determine
which WSS-SF scales would bridge positive and negative
schizotypy in order to gain a better understanding of how
the weakly related factors are linked. In line with previous
research, we expect that the social anhedonia scale will be
connected to a positive schizotypy scale for all networks and
samples, bridging the negative and positive schizotypy factors
(Kwapil et al., 2008; Lewandowski et al., 2006). On the basis

of previous correlational and factor-analytic work (Gross
et al., 2015; Wuthrich & Bates, 2006), we anticipate that, for
all networks and samples, perceptual aberration will have the
most connections to social anhedonia.

Another aim of the study was to evaluate the between-
sample comparability and reproducibility of both network fil-
tering approaches. Following Forbes et al. (2017), we assessed
the comparability of the global network characteristics—
ASPL, average connectivity, average degree, CC, and edge
density—for both network approaches by examining the sim-
ilarities and differences between each sample. Moreover, we
assessed the reproducibility of the local network characteris-
tics by determining the proportion of edges that replicate (and
do not replicate) and by correlating centrality measures be-
tween each sample. On the basis of differences in edge density
and the type of correlations (i.e., zero-order vs. fully regressed
coefficients) used in each network filtering approach’s con-
struction, we anticipate that the IFN-based networks will have
better comparability (more similar global network character-
istics) and more robust reproducibility (better local network
characteristics) than the lasso-based networks.

Finally, we sought to determine which items were most
central to the WSS-SF’s schizotypy construct and investigate
whether these items were predictive of schizophrenia-
spectrum symptoms. Accordingly, we identified core, inter-
mediate, and peripheral items of Sample 1’s network structure
for both network filtering approaches. The core, intermediate,
and peripheral schizotypy items were then used in multiple
regression analyses to predict interview reports of
schizophrenia-spectrum symptoms and overall impairment
from a subset of participants in Sample 1. In this way, the
predictability of each filtering-based network structure was
examined. If the central items identified by each approach
are truly more core to the WSS-SF schizotypy phenomenon,
then we expect that they should predict schizophrenia-
spectrum symptoms at least as well as intermediate and pe-
ripheral items.

Method

Participants

Sample 1 consisted of participants (M = 19.4 years, SD = 3.7)
that were obtained from a large, independent sample of under-
graduate students (n = 6,137) from the University of North
Carolina at Greensboro (UNCG), previously reported in
Kwapil et al. (2008). Participants with missing data were ex-
cluded (n = 206), resulting in a sample consisting of 5,831
participants comparable to the original sample in terms of sex
(76% female) and ethnicity (74% Caucasian, 26% African
American). Sample 2 consisted of 2,171 undergraduate stu-
dents from the UNCG who were primarily young adults (M =
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19.6 years, SD = 3.3) reported in Gross, Silvia, Barrantes-
Vidal, and Kwapil (2012). This sample was comparable to
the first sample in terms of sex (76% female) and ethnicity
(69% Caucasian, 31% African American).

A subset sample of 430 participants was drawn from
Sample 1 and was administered structured diagnostic inter-
views. These participants were either recruited through the
university’s research pool or were oversampled on the basis
of elevated scores on the schizotypy scales, to assure adequate
representation of high-schizotypy participants. This sam-
ple was comparable to Samples 1 and 2 in terms of demo-
graphics (74% female; 74% Caucasian and 26% African
American) but had slightly higher schizotypy means than ei-
ther sample, consistent with the oversampling procedure
(Table 1).

Materials

Schizotypy assessment

Schizotypy was measured via the WSS-SF, which contains 60
true–false items measuring positive and negative schizotypy.
Positive schizotypy is measured by two subscales assessing
perceptual aberration and magical ideation; negative
schizotypy is measured by two subscales assessing social
and physical anhedonia—all scales have 15 questions each
(SI 1). The data were coded in raw matrices such that each
row contained all endorsements made by a participant i and
each column is a different item j comprising the entire scale.
Each cell is either coded as one (participant i endorsed item j)
or zero (participant i did not endorse item j). After reverse-
scoring as needed, all items were scored so that higher scores
reflected higher levels of schizotypy.

Interview measures

The Global Assessment of Functioning Scale (GAFS;
Endicott, Spitzer, Fleiss, & Cohen, 1976) was used to assess
overall functioning of each participant ranging from
marked psychopathology at the low end to superior func-
tioning at the high end. The Wisconsin Manual for
Assessing Psychotic-Like Experiences (L. J. Chapman &
Chapman, 1980; Kwapil, Chapman, & Chapman, 1999)
was used to measure the deviance of psychotic symptoms
across a range of clinical and subclinical deviancy. The
Negative Symptom Manual (Kwapil & Dickerson, 2001)
measures six classes of clinical and subclinical negative
symptoms of schizophrenia. Finally, modules of the
International Personality Disorders Examination (World
Health Organization, 1995) were used to provide dimen-
sional ratings of schizoid, schizotypal, and paranoid per-
sonality disorder traits.

Network construction

IFN approach

In these networks, nodes represent the different items and
edges represent endorsement associations between
items—the tendency of the sample to endorse item b,
given that item a is endorsed—computed with Pearson’s
correlations. In binary data, Pearson’s correlations are
equal to phi coefficients, which are related to a chi-
square of a 2 × 2 contingency table and are interpreted
as the association between two variables (Sokal & Rohlf,
1995). Phi coefficients were used, rather than tetrachoric
correlations, because the schizotypy scales are positively
skewed, which violates the assumption of a bivariate nor-
mal distribution used in the calculation of tetrachoric cor-
relations (Glass & Hopkins, 1970).

Network filteringThe TMFG method (Massara et al., 2016)
was applied to construct a subnetwork, from the endorse-
ment association matrix, that captures the most relevant
information between nodes that are embedded in the orig-
inal network and minimizes spurious associations. The
resulting subnetwork is a clique-tree composed of four-
node cliques connected with three-node cliques, and it
retains a total of 3n – 6 edges from the original network.
The TMFG method begins by sorting all edge weights
(i.e., the zero-order correlations) in descending order and
adding the largest edge weight one by one, on the basis of
an iterative construction process of a topologically
constrained network (i.e., planar). In this construction,
the algorithm adds a node into three-cliques, on the basis
of a BT2 move^ (Aste, Gramatica, & Di Matteo, 2012;
Massara et al., 2016). The T2 move inserts a node into
any three-clique’s center where edges are added to it,
forming a tetrahedron and keeping the network planar.
When adding these nodes, the algorithm optimizes a score
function that ensures the added node has the maximum
increase in the sum of the additional edge weights (see
SI 2 for further technical details). We computed the
TMFG-filtered, weighted adjacency matrix using the
NetworkToolbox package1 (Christensen, 2018) in R (R
Core Team, 2017).

lasso approach

The Ising model uses logistic regression to isolate the unique
associations between all variables—that is, the association
between two nodes is conditioned over all nodes in the net-
work, leaving only the unique variance between the two nodes

1 The most up-to-date version of the NetworkToolbox package can be re-
trieved from https://github.com/AlexChristensen/NetworkToolbox
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of reference.2 These conditioned associations have been
interpreted as potential causal pathways in previous lasso-
based network models (Epskamp et al., in press); van
Borkulo et al., 2014). Logistic regression coefficients are
log-odds ratios and not partial correlations—thus, their inter-
pretations are not equivalent but have been referred to as anal-
ogous in the literature, so for convenience we will refer to the
logistic regression coefficients as fully regressed coefficients.
Raw data for both samples were analyzed on the basis of the
Ising model, using the IsingFit package (van Borkulo et al.,
2014) in R.

Network filtering For both samples, the eLasso method in the
Ising model (van Borkulo et al., 2014) was applied to mini-
mize spurious edges and increase interpretability of the net-
work. The Ising model applies an ℓ1-regularization penalty on
the inverse covariance matrix (Ravikumar et al., 2010; van

Borkulo et al., 2014), which is determined by the EBIC
(Chen & Chen, 2008), to minimize spurious edges when con-
structing the networks. The EBIC contains a hyperparameter
(γ) that controls how much the model prefers sparsity—rang-
ing from sparse models with less connections (γ > 0) to dense
models with more connections (γ = 0). In the past, the
hyperparameter has been reported to be optimal when equal
to .25 (Barber & Drton, 2015; Ravikumar et al., 2010). Thus,
on the basis of previous studies, for both samples we used the
suggested γ = .25 setting.

Network measures

Global network characteristics

To investigate the global characteristics of the network, we
examined five global network measures: ASPL, average con-
nectivity, average degree, CC, and edge density. The ASPL
measures the mean shortest distance between any two nodes
in the network—smaller values suggest that, on average,
symptoms generally are less distant from other symptoms.
The average connectivity measures the consistency of the
edge weights included in the network (De Schryver et al.,

2 Notably, these two network filtering approaches differ in the statistics being
used (i.e., phi coefficients versus logistic regression with one node regressed
over all others). Despite this, they yield the same interpretation of conditional
independence. To eliminate any statistical differences between the two ap-
proaches, we have applied the glasso approach to phi coefficients.
Comparable analyses (SI 4) and discussion (SI 5) are provided in the supple-
mentary materials.

Table 1 Descriptive statistics for each measure and the respective samples

Measure Descriptive Statistics

Sample Size: n = 5,831 n = 2,171 n = 430

Statistic M
(SD)

Range M
(SD)

Range M
(SD)

Range

Physical anhedonia 2.09
(2.30)

0–14 2.26
(2.28)

0–14 2.71
(2.95)

0–14

Social anhedonia 1.77
(2.41)

0–15 1.96
(2.42)

0–15 3.01
(3.50)

0–15

Perceptual aberration 1.21
(2.28)

0–15 1.13
(2.15)

0–15 2.32
(3.49)

0–15

Magical ideation 3.26
(2.91)

0–15 3.19(2.87) 0–15 4.30
(3.74)

0–14

Negative schizotypy total 3.86
(3.80)

0–29 4.22
(3.75)

0–24 5.72
(5.25)

0–26

Positive schizotypy total 4.47
(4.64)

0–30 4.32
(4.46)

0–30 6.61
(6.72)

0–28

Global Assessment Functioning Scale (GAFS) 73.19
(10.13)

6–91

Psychotic-Like Experiences (PLEs) 1.29
(2.07)

0–9

Negative symptoms 3.03
(4.34)

0–22

Schizoid symptoms 0.74
(1.58)

0–11

Schizotypal symptoms 1.13
(1.79)

0–11

Paranoid symptoms 0.83
(1.68)

0–12

Samples 1 and 2 had similar statistics for each schizotypy scale. The subsample had slightly higher means and standard deviations than did the two large
samples
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2015). This was calculated by summing the absolute sum of
all edge weights included in each network and dividing it by
the number of edges in the network. The average degree—
mean number of connections each node has in the network—
is computed by summing every node’s degree in the network
and dividing it by the number of nodes. The CC measures the
extent in which two neighbors of a node will be neighbors
themselves—that is, whether two connected nodes will both
be connected to a third node. In this way, the CC represents the
cliquishness of the network and indicates the tendency of a
symptom to cluster with nearby symptoms. The edge density
of a network is the proportion of edges included over the total
of all possible connections ((n2 – n)/2). The ASPL, average
degree, CC, edge density, and average connectivity were com-
puted using the NetworkToolbox package in R whose metrics
were adapted from the Brain Connectivity Toolbox in Matlab
(Rubinov & Sporns, 2010).

Centrality measures

In line with previous research, we used centrality mea-
sures to investigate the local network characteristics.
These are considered local because influence is assessed
for each node, whereas global measures assess the struc-
ture of the entire network. Betweenness centrality (BC)
measures the extent a node lies on the paths between
other nodes (Freeman, 1977). Therefore, items (nodes)
with high betweenness values make up the most central
elements or Bbackbone^ of the network (Borgatti, 2005).
Closeness centrality (LC) is the inverse of the average
distance from all other nodes (Boccaletti, Latora,
Moreno, Chavez, & Hwang, 2006; Freeman, 1977).
Put simply, closeness centrality is the distance away
from the most center point of the network—nodes in
the middle of the network will have higher closeness
centrality values than the most peripheral nodes. Node
strength sums the edge weights of all the connections
linked to a node so that a high number of connections
and high edge weights will have a greater value (Barrat,
Barthelemy, Pastor-Satorras, & Vespignani, 2004;
Newman, 2004). Thus, node strength centrality mea-
sures the number of direct connections and the magni-
tude of those connections. Degree (k), the number of
connections a node has, is a basic measure of a node’s
importance, and its distribution reveals important infor-
mation about the type of network. Eigenvector centrality
(EC) is the weighted sum of direct and indirect connec-
tions of a node and is an index of the quality of con-
nections for each node (Bonacich & Lloyd, 2001). For
example, the EC distinguishes a node of low degree that
is connected to many high degree nodes and a high
degree node that is connected to only low degree nodes
(Bonacich, 2007). Thus, higher EC values are given to

nodes that have connections to other central nodes (van
Borkulo et al., 2015). The NetworkToolbox package in
R was used to compute all measures of centrality.

Statistical analyses

Representation of positive and negative schizotypy

One aim in analyzing the network structure of the WSS-
SF is to analyze the network structure of the WSS-SF in
two large, independent samples, by both lasso-based and
IFN-based approaches, to determine which WSS-SF
scales would bridge positive and negative schizotypy. To
do so, we examined the number and strength of the con-
nections between the positive and negative schizotypy
scales. Moreover, we examined how many edges between
the two factors replicated as well as how many nodes—
that were connected by those edges—replicated between
the two samples for both approaches.

Global network characteristics

ASPL, CC, and average connectivity To evaluate the differ-
ences for the ASPL and CC, we applied independent samples
t test analyses for both measures for both approaches. For the
ASPL statistical analysis, we used the distance matrix—a ma-
trix with the shortest number of paths from one node to every
other node—to calculate the local shortest path length
(ASPLi). The ASPLi is the average distance for each node
(i.e., the distance vector) to all other nodes. In this way, the
mean of the ASPLi is the global ASPL, which allows the
statistical measurement of differences in the global ASPL be-
tween samples. Similarly, we computed the local clustering
coefficient (Ci), which is the average of each node’s clustering
coefficient vector. Again, the mean of the Ci is the global CC
and this allows us to statistically test for differences in the
global CC. A significant difference for the ASPL would sug-
gest that on average a node is closer to (or further away from)
all other nodes. A significant difference for the CC would
suggest that on average a node is more (or less) connected
within its local neighborhood. To test for differences in the
average strength of the edge weights, we used an independent
samples t test analyses on the average connectivity between
the two samples for both approaches. A significant difference
would suggest that one sample’s network retained larger edge
weights on average than the other sample’s network. Previous
work suggests that significant differences in edge strength
might suggest clinically relevant differences between samples
(van Borkulo et al., 2015). In contrast, no difference would
suggest that the edge weights retained in the network are sim-
ilar and that the samples are similar in psychopathological
expression.
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Local network characteristics

Local network characteristics were assessed by the number of
edges that replicated between both samples’ networks, the
differences in the strength of the replicated edge weights,
and the strength of linear and rank-order centrality
correlations.

Edge replication Edges replicated if they appeared in both
samples. The proportion of edges that were replicated were
divided by the total number of edges in the respective sample.
In the lasso approach, this led to two values. One value for the
proportion of edges in Sample 1 (e.g., 400 edges) and another
value for the proportion of edges in Sample 2 (e.g., 248
edges). In the IFN approach, edges were constant (i.e., 174
edges), so only one edge replication value was necessary.
Next, the mean absolute edge weight difference of replicated
edges was calculated using only the edges that replicated and
then difference between Sample 1 and Sample 2’s replicated
edges strengths were calculated. Finally, the absolute values
were computed and Pearson’s correlations were used to deter-
mine the similarity between the replicated edge weights
(Borsboom et al., 2017). The edge replication measures were
computed using the NetworkToolbox package in R.

Between-sample centrality correlations To examine the repro-
ducibility of centrality values and their rank-order between the
samples for both approaches, Pearson’s correlation and
Kendall’s tau-b coefficient were used. Pearson’s correlations
were used to evaluate the linear consistency of the centrality
values, as used in Borsboom et al. (2017). The rank-order
correlations were also used because previous research has
suggested that centrality indices are often interpreted by their
rank (Forbes et al., 2017). Standard guidelines for between-
sample reliability have yet to be established in the field of
psychometric network analysis.

Prediction of psychopathological interview measures

Hybrid centrality measure To evaluate the predictability of
both filtering approaches’ centrality measures, we determined
nodes that were most central in Sample 1’s network. Sample
1’s centrality measures were used to predict interview reports
of impairment and schizophrenia-spectrum symptoms be-
cause the interviewed sub-sample was drawn from that sam-
ple. To assess overall centrality, we used a hybrid centrality
measure (Pozzi, Di Matteo, & Aste, 2013). The hybrid cen-
trality measure ranks nodes on the basis of their centrality
values across multiple measures of centrality (BC, LC, k,
EC, and NS). Based on previous work (Pozzi et al., 2013),
we used weighted (w) and unweighted (u) tied rankings
(sorted in descending order) of each centrality:

HC ¼ BCw þ BCu þ LCw þ LCu þ ku þ ECw þ ECu þ NSw−8
8� N−1ð Þ

The hybrid centrality measure describes highly central
nodes with large values and highly peripheral nodes with
small values. This hybrid measure is not biased by greater
weight given to any one centrality measurement (each central-
ity measure quantifies different aspects of Bcentralness^) and
provides a singular, continuous measure of overall centrality
in the network. Such a measure has been shown to provide
more consistent and robust results than any single centrality
measure in isolation (Pozzi et al., 2013). The NetworkToolbox
package in R was used to compute the hybrid centrality
measure.

Multiple regression of interview symptoms The hybrid cen-
trality values were sorted in descending order to deter-
mine the core, intermediate, and peripheral WSS-SF
items. The top five items for each scale were designated
as core, the next five as intermediate, and the last five as
peripheral. These breaks (i.e., one third of the items in
each scale) were chosen to give an even distribution and
gradation of item classifications for each scale. The core,
intermediate, and peripheral positive and negative
schizotypy items were summed together to create item
group totals. Finally, the positive and negative schizotypy
item groups were used in multiple regression analyses to
predict psychopathological impairment and several
schizophrenia-spectrum symptoms.

Code and scripts

R code for all analyses performed in this study can be found in
SI 6. All data and code used in this study is available on the
Open Science Framework: https://osf.io/c6rqy/.

Procedure

Participants for both samples completed the Wisconsin
Schizotypy Scales (WSS) as part of mass screening assess-
ments (Gross et al., 2012; Kwapil et al., 2008). Participants
who received scores of three or greater on an infrequent
responding scale were omitted from the analyses (J. P.
Chapman & Chapman, 1983). Then, the 60 items that are
included in the WSS-SF were extracted from the original
WSS. Participants provided informed consent to participate
in the study and received course credit for their participation.

Participants from the Kwapil et al. (2008) subsample were
administered structured recorded interviews conducted by a
licensed clinical psychologist and advanced graduate students
in clinical psychology (Kwapil et al., 2008), which lasted ap-
proximately 2 h. The interviewers were not aware of the
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participant’s scores on the schizotypy questionnaires. All stud-
ies included were approved by the UNCG Institutional
Review Board.

Results

Descriptive statistics for each WSS-SF scale, the positive and
negative schizotypy factors, and the interview ratings are present-
ed in Table 1.We represented theWSS-SF networks on the basis
of the lasso and IFN approaches described above and applied
them to both samples, and then visualized the networks using the
qgraph package (Epskamp, Cramer, Waldorp, Schmittmann, &
Borsboom, 2012) in R. Then we computed the various global
(ASPL, average connectivity, average degree, CC, and edge den-
sity) and local (BC, CC, NS, k, and EC) network measures.
Afterward, the edge replication and correlation analyses were
computed as described above. Finally, we computed the hybrid
centrality measures for both approaches and used the core, inter-
mediate, and peripheral items in multiple regression analyses,
predicting interview reports of schizophrenia-spectrum symp-
toms and psychopathological impairment.

Representation of positive and negative schizotypy

IFN approach In both samples, the social anhedonia scale was
connected with positive schizotypy, which is consistent with
traditional factor analysis findings (Gross et al., 2012, 2015).
Between both networks, six edges connected social anhedonia
and perceptual aberration. As predicted, social anhedonia was
connected to positive schizotypy via perceptual aberration
(Fig. 1). This finding is consistent with previous correlation
results (Gross et al., 2012) and with the factor analysis find-
ings using the three scales of the WSS and the Schizotypal
Personality Questionnaire (Wuthrich & Bates, 2006). The av-
erage edge strengths of the six edges between the positive and
negative schizotypy factors were relatively small (Sample 1,
M = .13, SD = .03; Sample 2,M = .15, SD = .02) as compared
to the average edge strengths of the networks (Sample 1,M =
.25, and Sample 2, M = .24). Of the six edges, four repli-
cated with an average absolute edge weight difference of
.01 (SD = .014). Moreover, in both networks the same three
social anhedonia items (SA02, SA07, SA08) were connected
to two of the three common perceptual aberration items (PB03
and PB07), which meant that five of the seven nodes
connecting between the two factors replicated (71.4%).

lasso approach Beginning with Sample 1, there were 27 (sev-
en negative) connections between positive and negative
schizotypy. Similar to the IFN-based networks, the strength
of the bridging edges—connections between the positive and
negative schizotypy factors—was relatively small (M = .14,
SD = .07) as compared to the average connectivity of the

network (M = .36). Of the 27 edges, eight (five negative)
edges were between physical anhedonia and magical ideation,
six edges were between social anhedonia and perceptual ab-
erration, and the remaining 13 (two negative) edges were be-
tween social anhedonia and magical ideation. Consistent with
traditional analyses, social anhedonia had most of the connec-
tions (19 total) with positive schizotypy (Gross et al., 2012;
Kwapil et al., 2008). But contrary to our prediction, magical
ideation had more edges connected to social anhedonia than to
perceptual aberration.

In Sample 2, there were nine (three negative) connections
between positive and negative schizotypy. Again, the average
weight of these edges (M = .23, SD = .11) was smaller than the
average connectivity of the network (M = .44). Of the nine
edges, three negative edges were between physical anhedonia
and magical ideation, two edges were between social anhedo-
nia and perceptual aberration, and four edges were between
social anhedonia and magical ideation. Similar to Sample 1,
social anhedonia had the most connections to the positive
schizotypy items (six total), and the magical ideation scale
had the most connections to social anhedonia. Notably, none
of the bridging edges from Sample 1 replicated in Sample 2.
Moreover, of the 34 nodes (16 negative and 18 positive
schizotypy) that were connected by these edges, only eight
replicated (23.5%; SA06, SA08, SA10, MI01, MI05, MI06,
MI12, and MI14).

Fig. 1 Avisualization comparison of the WSS-SF networks structure for
the samples of the IFN-based and lasso-based methods. Nodes are iden-
tified by color and scale: physical anhedonia (orange; 1–15), social anhe-
donia (blue; 16–30), perceptual aberration (purple; 31–45), and magical
ideation (green; 46–60). Edge thickness depicts the strength of the edge
weights
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Global characteristics

IFN approach The IFN-based networks had identical edge
densities for both samples, .098 (174 edges; Table 2). Since
the edge density was constant between samples, the global
characteristics of the networks were considerably consistent.
The ASPL, t(118) = 1.157, p = .250, and CC, t(118) = – 0.259,
p = .796, did not differ significantly between the two net-
works. Because average degree is a function of edge density,
it also did not differ between the two samples (5.80).
However, the standard deviations were slightly different be-
tween the two samples (Sample 1 = 2.81, Sample 2 = 3.04).
Finally, the average connectivities hardly differed between the
two samples, t(346) = 0.858, p = .39, suggesting that the
average edge weights included in the networks between the
two samples were highly similar and that both samples had
similar psychopathological expressions.

lasso approach The lasso-based networks had different edge
densities between the samples: Sample 1 had an edge density
of .226 (400 edges), and Sample 2 had an edge density of .140
(248 edges; Table 2). As expected, the differences in edge
density affected the global network measures. First, the
ASPL, t(118) = – 9.356, p < .001, and the CC, t(118) =
2.136, p = .035, were significantly different between the two
networks. This means that the ASPL significantly decreased
and the CC significantly increased when more edges were
retained in the network (i.e., Sample 1’s network). Next, the
average degrees were different between the samples, with
13.33 (SD = 4.48) for Sample 1 and 8.27 (SD = 3.51) for
Sample 2. Finally, the average connectivities differed signifi-
cantly between the networks, t(646) = – 2.829, p = .005,
suggesting that Sample 1’s network retained smaller edge
weights than did Sample 2’s network. Overall, the global net-
work characteristics for the lasso-based networks were signif-
icantly different between the samples, whereas the IFN-based
networks did not differ, suggesting that the lasso-based net-
works had lower comparability between the samples.

Changes in estimated edges

IFN approach Because the edge densities were equivalent be-
tween the samples, only one replication percentage was pro-
duced. Samples 1 and 2 had 108 of 174 edges replicate
(62.1%). Of the edges that replicated, the mean absolute edge
weight difference was relatively small, .026. This is further
reflected by the high correlation between the replicated edge
weights between the two samples, r(106) = .93. Moreover,
these results support the finding that the average connectivi-
ties hardly differed.

lasso approach Starting with Sample 1, the proportion of
edges that replicated in Sample 2 was 204 of 400 edges

(51%). However, the same 204 replicated edges in Sample 2
revealed 82.3% of the edges that replicated. Of the edges that
replicated, we calculated the mean absolute edge weight dif-
ference between the samples (SDs are reported in Table 2).
Between Samples 1 and 2, there was an average edge weight
difference for replicated edges of .181. We also found a large
correlation between the replicated edge weights, r(202) = .84.
The IFN-based networks, however, had a numerically larger
correlation for the replicated edge weights.

Node centrality

IFN approach The between-sample centrality correlations
were fairly consistent across all centrality measures
(Table 2). Pearson’s centrality correlations ranged from .70
for degree to .94 for eigenvector centrality. Kendall’s tau cen-
trality correlations ranged from .54 for betweenness to .82 for
eigenvector centrality. For both correlation types, between-
ness centrality and degree had similar correlations, whereas
closeness centrality and node strength were slightly higher.
Eigenvector centrality had the highest correlations of all cen-
trality measures. Considering the large differences in sample
size, we take these findings as indicating strong between-
sample reliability.

lasso approach The between-sample centrality correlations for
the lasso-based networks had a larger range. Pearson’s cen-
trality correlations ranged from .24 for betweenness to .96 for
eigenvector centrality (Table 2). Kendall’s tau centrality cor-
relations ranged from .24 for degree to .89 for eigenvector
centrality. Eigenvector centrality was the most stable, follow-
ed by node strength centrality. The high correlations of node
strength are consistent with previous findings (Epskamp et al.,
2018; Fried et al., 2018). Betweenness centrality had a mar-
ginally significant Pearson’s correlation (r = .24, p = .071) and
a slightly larger correlation for Kendall’s tau (r = 38).
Similarly, closeness centrality’s correlations were moderately
related between the two samples. The results for betweenness
and closeness centrality are consistent with previous findings,
which suggests that they are less reliable than node strength
(Epskamp et al., 2018). We found small correlations for de-
gree, which may have been due to the difference in average
degrees between the two networks. In summary, the IFN-
based networks produced correlations equal to or higher than
the lasso correlations across all centrality measures except for
eigenvector centrality.

Predicting interview reports
of schizophrenia-spectrum symptoms

To assess the predictability of the centrality of items in each
network filtering approach, we applied multiple-regression
ana lyse s to p red i c t t he in t e rv i ew measu re s o f
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psychopathological impairment and schizophrenia-spectrum
symptoms for the 430 participants using the core, intermedi-
ate, and peripheral schizotypy items from Sample 1 (see SI 3
for items). Using the hybrid centrality measure, which gave us
an overall centrality score, we determined the core, interme-
diate, and peripheral items as described above.

IFN approach Consistent with our hypotheses, as predictors
the positive and negative core schizotypy items were equal to
or better than the intermediate and peripheral items for all
measures of schizophrenia-spectrum pathology and overall
functioning (Table 3). The positive core schizotypy items sig-
nificantly predicted diminished overall functioning (β = –
.267, p = .002), with marginal effects for positive (β = –
.156, p = .071) and negative (β = – .124, p = .066) intermedi-
ate schizotypy items. For psychotic-like experiences, both the
positive core (β = .332, p < .001) and intermediate (β = .214, p
= .008) schizotypy items had significant effects, with positive
core schizotypy items having a larger effect. Negative and
schizoid symptoms were significantly predicted by the nega-
tive core (β = .275 and β = .271, respectively; both ps < .001)
and intermediate (β = .187, p = .003, and β = .133, p = .046,
respectively) schizotypy items, with negative core schizotypy
items having slightly larger effects for both symptoms. Both
positive (β = .234, p = .007) and negative (β = .137, p = .042)
core schizotypy items were significantly associated with

schizotypal symptoms. Moreover, positive intermediate
schizotypy items were also significantly related to schizotypal
symptoms (β = .175, p = .039). Finally, only positive core
schizotypy items predicted paranoid symptoms (β = .183, p
= .049). Overall, these results confirm that the IFN approach’s
centrality measures have predictive validity; core schizotypy
items are equal to or better than the intermediate and periph-
eral schizotypy items for predicting schizophrenia-spectrum
symptoms. Moreover, intermediate schizotypy items were
more related to impairment and symptoms than are peripheral
items, but to a lesser degree than the core schizotypy items.

lasso approach The positive core schizotypy items performed
consistent with our predictions, associating with impairment
and nearly all schizophrenia-spectrum symptoms except for
negative symptoms (Table 4). Contrary to our predictions,
however, the negative core schizotypy items were not as ef-
fective as the negative intermediate and peripheral schizotypy
item groups at predicting some schizophrenia-spectrum symp-
toms. Both positive (β = – .275, p = .001) and negative (β = –
.162, p = .017) core schizotypy items were related to overall
psychopathological impairment. Psychotic-like experiences
were predicted by positive core (β = .433, p < .001) and
intermediate (β = .156, p = .038) schizotypy items. All nega-
tive schizotypy item groupswere positively related to negative
symptoms, with the effect sizes descending from peripheral (β

Table 2 Summary of global and local characteristics for both network filtering approaches across all samples

lasso IFN

n = 5,831 n = 2,171 n = 5,831 n = 2,171

Edge density (# of edges) .226 (400) .140 (248) .098 (174) .098 (174)

ASPL 2.09 2.55 3.75 3.62

CC .56 .49 .69 .71

Average degree 13.33 8.27 5.80 5.80

Average connectivity (SD) .35 (.34) .43 (.40) .25 (.08) .24 (.08)

Changes in Estimated Edges

Proportion of replicated edges (%) a 204 (51) 204 (82.3) 108 (62.1)

Proportion of non-replicated edges (%) a 196 (49) 44 (17.7) 66 (37.9)

Mean absolute edge weight difference of replicated edges (SD) .181 (.154) .026 (.020)

Pearson’s correlation between replicated edge weights .84*** .93***

Correlations Correlations

Node Centrality Kendall’s tau Pearson’s Kendall’s tau Pearson’s

Betweenness .38*** .24† .54*** .74***

Closeness .45*** .59*** .66*** .84***

Node Strength .58*** .79*** .63*** .79***

Degree .24** .42*** .55*** .70***

Eigenvector .89*** .96*** .82*** .94***

Hybrid .34*** .52*** .58*** .79***

a Proportion of replicated and non-replicated edges differed between samples for the Isingmodel because of the differences in edge densities. † p < .10; * p
< .05; ** p < .01; *** p < .001
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= .201, p = .002) to intermediate (β = .185, p = .004) to core (β
= .166, p = .010) items. Unexpectedly, positive peripheral
schizotypy items were negatively related with negative symp-
toms (β = – .144, p = .044). Schizoid symptoms were posi-
tively related to positive core (β = .194, p = .021), negative
intermediate (β = .220, p = .001), and negative peripheral (β =
.177, p = .009) schizotypy items. Notably, negative core
schizotypy items did not predict schizoid symptoms (β =
.073, p = .272). Similar to the results for negative symptoms,
positive peripheral schizotypy items were negatively associat-
ed with schizoid symptoms (β = – .166, p = .025). Positive
core (β = .277, p = .001) and intermediate (β = .168, p = .035)
schizotypy items predicted schizotypal symptoms, with posi-
tive core items having a larger effect. Finally, paranoid symp-
toms were related to positive (β = .232, p = .010) and negative
(β = .173, p = .015) core schizotypy items, as well as margin-
ally related to positive intermediate items (β = .153, p = .072).
Surprisingly, positive peripheral schizotypy items had a sig-
nificant negative relationship with paranoid symptoms (β = –
.195, p = .013).

Overall, the lasso results were mixed. On the one hand, the
positive schizotypy item groups for the lasso-based network

had the expected predictive distinctions of overall centrality—
that is, between core, intermediate, and peripheral items. On
the other hand, the negative schizotypy item groups exhibited
the opposite distinctions for the expected relationships with
the negative schizophrenia-spectrum symptoms.

Discussion

In the present study, we conducted the first network analysis
of the WSS-SF to investigate the underlying structure of its
multidimensional schizotypy continuum. This was achieved
by applying two different network methodologies: one popu-
lar approach in psychometric network analysis (lasso;
Epskamp et al., 2018), and an alternative approach (IFN) that
has been applied in cognitive (Borodkin et al., 2016; Kenett,
Beaty, Silvia, Anaki, & Faust, 2016; Kenett et al., 2013), neu-
ral (Tewarie et al., 2015; van Dellen et al., 2015), and financial
market networks (Massara et al., 2016; Tumminello et al.,
2005). To evaluate the IFN approach, we compared its perfor-
mance with the current state-of-the-art approach, the lasso
approach (Epskamp et al., in press); van Borkulo et al.,

Table 3 Multiple regressions of psychopathology and schizophrenia-spectrum symptoms on positive and negative schizotypy’s core, intermediate, and
peripheral item groups for the IFN-based network

IFN Interview Criterion (df = 423)

Schizotypy Predictors (β) GAFS PLEs Negative Schizoid Schizotypal Paranoid

Positive Core – .267** .332*** .100 .139 .234** .183*

Positive Intermediate – .156† .214** .055 .010 .175* .059

Positive Peripheral .076 .007 – .118 – .093 .014 – .039

Negative Core – .076 .064 .275*** .271*** .137* .015

Negative Intermediate – .124† .050 .187** .133* – .015 .098

Negative Peripheral – .052 – .062 .076 .058 .063 .081

Adj. R2 .162*** .278*** .247*** .185*** .184*** .059***

All beta coefficients are standardized; GAFS, Global Adjustment Functioning Scale; PLEs, psychotic-like experiences. † p < .10; * p < .05; ** p < .01;
*** p < .001

Table 4 Multiple regressions of psychopathology and schizophrenia-spectrum symptoms on positive and negative schizotypy’s core, intermediate, and
peripheral item groups for the lasso-based network

lasso Interview Criterion (df = 423)

Schizotypy Predictors (β) GAFS PLEs Negative Schizoid Schizotypal Paranoid

Positive Core – .275*** .433*** .068 .194* .277*** .232**

Positive Intermediate – .017 .156* .123 .038 .168* .153†

Positive Peripheral – .053 – .030 – .144* – .166* – .012 – .195*

Negative Core – .162* – .056 .166** .073 .008 .173*

Negative Intermediate – .071 .080 .185** .220*** .105 – .005

Negative Peripheral – .033 .040 .201** .177** .080 .028

Adj. R2 .156*** .285*** .246*** .192*** .185*** .082***

All beta coefficients are standardized; GAFS, Global Adjustment Functioning Scale; PLEs, psychotic-like experiences. † p < .10; * p < .05; ** p < .01;
*** p < .001
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2014). Each approach was evaluated on its representation of
the WSS-SF’s schizotypy continuum and assessed on its
between-sample performance on the basis of global and local
network characteristics. To examine the predictability of the
network structure produced by each approach, we identified
core, intermediate, and peripheral items of positive and nega-
tive schizotypy, which were used to predict interview reports
of schizophrenia-spectrum symptoms.

Overall, we found that both filtering approaches had net-
work connections that were consistent with traditional find-
ings. The IFN approach, however, produced more reliable and
theoretically consistent results. Moreover, we found the IFN
approach was more consistent in reproducing global and local
characteristics of the WSS-SF networks between samples.
Finally, both approaches had strong predictive validity for
the positive schizotypy continuum, but the IFN-based network
had better predictability for the negative schizotypy continu-
um, too. Thus, we conclude that the network structure of the
IFN-based network had better overall predictability than the
lasso-based network.

Representation of positive and negative schizotypy

Both network filtering approaches provided results that were
consistent with traditional findings—social anhedonia bridged
positive and negative schizotypy factors (Gross et al., 2012;
Lewandowski et al., 2006). The approaches differed, however,
on which positive scale had the most connections to social
anhedonia. The IFN-based networks revealed that perceptual
aberration had the most connections to social anhedonia,
which is consistent with previous correlational findings
(Gross et al., 2012). Moreover, these results also support past
theoretical schizotypy interpretations, which suggest that in-
trapersonal body distortions affect interpersonal social rela-
tionships (Wuthrich & Bates, 2006). The lasso-based net-
works revealed that magical ideation had the most connec-
tions to social anhedonia. Magical ideation has also been
shown to be moderately related to social anhedonia but to a
lesser degree than perceptual aberration (Gross et al., 2012).
Therefore, these results are not incompatible and may in fact
complement each other. A possible explanation for why social
anhedonia had more connections with different positive
schizotypy scales could be that the perceptual aberration scale
has stronger zero-order correlations, but when items are con-
ditioned over all other items, the common variance shared by
the perceptual aberration correlations is removed and magical
ideation items are more uniquely related.

Notably, the zero-order correlations for perceptual aberra-
tion in the IFN-based networks were consistent between the
two samples, but the unique associations (i.e., fully regressed
coefficients) in the lasso-based networks were less reliable and
did not replicate. The poor reproducibility of bridging connec-
tions has been noted in previous research using traditional

conditional independence networks (Forbes et al., 2017).
This suggests that bridging edges in the lasso-based networks
might be unreliable. One reason for this might be that the zero-
order correlations of the bridging edges are typically small (as
shown by our results), so conditioning them increases
measurement-error and makes them prone to arbitrary reten-
tion and removal.

To further advance the understanding of the schizotypy
continuum, future work should consider using network anal-
ysis on multiple questionnaires like previous factor analysis
has done (Wuthrich & Bates, 2006). Such a network could use
questionnaires, such as the WSS-SF, the Multidimensional
Schizotypy Scale (Kwapil et al., 2017), the Schizotypal
Personality Questionnaire (Raine & Benishay, 1995), and
the Oxford–Liverpool Inventory of Feelings and
Experiences (Mason, Claridge, & Jackson, 1995), to form a
nomological network (Cronbach & Meehl, 1955) of
schizotypy (Meehl, 1962). The combination of these scales
could further develop the measurement of schizotypy by in-
creasing the definitiveness and distinctiveness of its dimen-
sions. Moreover, the conceptual hierarchy produced by the
IFN approach’s clique structure would be particularly useful
for investigating the hierarchical structure of the schizotypy
nomological network.

Between-sample network characteristics

Overall, the IFN approach was more consistent across global
network characteristics and nearly all local centrality mea-
sures. This was expected because the IFN approach constrains
the networks to an equal edge density, which maintains a
similar network structure and ensures network comparability
across independent samples. In contrast, the lasso approach
adapts the edge density on the basis of sample size, which
alters the network structure. For instance, the larger edge den-
sity in the lasso-based Sample 1’s network led to a larger CC,
smaller ASPL, greater average degree, and smaller average
connectivity. In comparison, the IFN-based networks had no
such differences. The significant differences in ASPL and CC
of the lasso-based networks suggest that nodes have different
potentials to influence their neighbors and other nodes in the
network. This significantly alters the interpretation of what a
node’s potential influence could be. Moreover, the significant
difference of average edge strength might be an effect of in-
cluding more edges that are smaller (rather than clinically
relevant differences between samples) because the sample size
suggests that these edges are no longer considered false pos-
itives. Thus, although the lasso-based network’s edge densi-
ties are adapted to produce fewer false positives in the specific
samples, the comparability and reproducibility of the network
measures between samples are influenced.

The edge replication proportions, for instance, are difficult
to compare for cross-sectional lasso-based networks. As we
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show, cross-sectional samples with large sample size differ-
ences can skew and complicate the true proportion of edges
that replicate. On the one hand, if a researcher uses the largest
sample as the baseline model, like past research has done
(Forbes et al., 2017), then the edge reproducibility between
samples becomes inflated because there are more edges on the
whole to replicate. On the other hand, comparing a smaller
sample to a larger sample likely underestimates the edge rep-
lication proportion. The IFN approach, however, produces a
single measurement, which makes the edge replication pro-
portion comparable and direct. In addition, despite the lasso
approach allowing fewer false positives, both lasso-based net-
works had a greater number of edges than the IFN-based net-
works. Thus, the IFN-based networks were more parsimoni-
ous (i.e., fewer number of edges) and had better global net-
work comparability.

Global network differences may have also affected the re-
producibility of local network measures (i.e., centrality) in the
lasso-based networks. For example, there were low correlations
for betweenness centrality, closeness centrality, and degree.
Previous research using the lasso approach has continuously
found that betweenness and closeness centrality have low cor-
relations and reliability (Epskamp et al., 2018; Forbes et al.,
2017). It’s likely that the low reliability of these measures is
due to variations in the global network structure (e.g., varying
ASPL values). Notably, the consistency of the global network
structure in the IFN-based networks seemed to improve the
reproducibility of the centrality measures. The IFN approach
had numerically larger between-sample centrality correlations
for all measures except for eigenvector centrality. The zero-
order correlations of the IFN approach also probably contribut-
ed to the higher centrality reproducibility because they included
less measurement-error. Therefore, centrality reproducibility in
the lasso-based networks likely suffered from two main issues:
differences in edge density and fully regressed coefficients. In
general, the centrality correlations for both approaches were
smaller than previous findings (Borsboom et al., 2017), which
was expected due to the large differences in sample size.

Finally, an important finding was that eigenvector central-
ity had very high between-sample correlations for both net-
work filtering approaches. In a growing field that is concerned
about the reliability and reproducibility of networks
(Borsboom et al., 2017; Epskamp et al., 2018; Forbes et al.,
2017; Fried & Cramer, 2017), the consistency of the eigen-
vector centrality suggests that it should be included with the
other centrality measures. The EC is proportional to the sum
of the centrality values of the nodes that it is connected to,
which means it is a decent singular measure of overall central-
ity. Moreover, the EC has important interpretations: it is relat-
ed to the dimensional structure of the network (Bonacich,
1972) and nodes high in EC have high quality connections,
meaning they have a high potential for influence in the net-
work. Because of this, the eigenvector centrality should

strongly be considered as a staple centrality measure for future
psychometric network analysis.

WSS-SF schizotypy continuum

For the IFN-based network, the interview results revealed that
items classified as core items were more strongly associated
with impaired functioning and schizophrenia-spectrum symp-
toms than intermediate and peripheral items. Furthermore,
negative schizotypy intermediate items were more related to
the negative symptoms and schizoid symptoms than peripher-
al items. Comparatively, the lasso-based network had similar
findings for positive schizotypy, with positive core items hav-
ing equal to or better associations with impairment and
schizophrenia-spectrum symptoms. The negative schizotypy
findings, however, were contrary to our expectations: negative
intermediate and peripheral schizotypy items had larger ef-
fects for negative symptoms and schizoid symptoms than the
negative core schizotypy items. These two symptoms are tra-
ditionally associated with negative schizotypy (Gross et al.,
2012; Kwapil et al., 2008), which means that negative core
schizotypy items should have had stronger effects. This sug-
gests that the lasso-based network did not provide as strong of
inferential differentiation of overall centrality within its struc-
ture for negative schizotypy items when compared to the IFN-
based networks.

The IFN-based network distinctions establish a richer con-
ceptualization of the WSS-SF’s schizotypy continuum, which
provides clearer links to the liability of schizophrenia-
spectrum disorders. Our findings indicate that core items have
greater clinical relevance than intermediate and peripheral
items, and some intermediate items are more related to clinical
symptoms than peripheral items. This gradation of the WSS-
SF’s schizotypy phenomenon increases the specificity of its
schizotypy continuum, which is useful for detecting early
signs of schizophrenia-spectrum liability before the onset of
disorder (Kwapil & Barrantes-Vidal, 2015).

Limitations

The first limitation, pointed out by Guloksuz et al. (2017),
pertains to the latent constructs already embedded in the
WSS-SF’s schizotypy construct. Schizotypy is based on
DSM criteria, which confines the understanding of
schizophrenia-spectrum disorders to symptoms that are al-
ready known. In this way, our network analysis largely sup-
ports previous knowledge. Although we extend this knowl-
edge of the WSS-SF’s schizotypy continuum by determining
specific items that are more relevant to clinical symptoms,
future research should expand the network analyses of
schizotypy to include behavioral and cognitive measurements.
For example, schizotypy has been linked to depression, anx-
iety, personality, executive control, and memory deficits
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(Kane et al., 2016; Lewandowski et al., 2006; Sahakyan &
Kwapil, 2016). A network including these measures would
provide a more holistic perspective for determining the liabil-
ity of schizophrenia-spectrum disorders.

Next, although the TMFG method of the IFN approach
performed well, the three- and four-clique structure imposed
by the TMFG method might not be suitable for all types of
psychometric networks. Moreover, all of the IFN methods
impose a specific network structure (i.e., planar or a tree) on
the data. This limitation is not unique to the IFN approach—it
holds for most network estimation methods (Epskamp, Kruis,
&Marsman, 2017)—but it strongly applies here. The imposed
structures of the IFN approach could produce too few or too
many connections than what are in the true network structure.
On the one hand, the tree and planar constraints are prone to
limiting the connections of densely connected nodes by
allowing only edges that keep the network a tree or planar.
On the other hand, spurious connections may be artificially
retained because of the cliques maintained in the PMFG and
TMFG structures. However, for the TMFGmethod specifical-
ly, artificial edges may be necessary to maintain its chordality
property (Spiegelhalter, 1987). Nevertheless, the IFN ap-
proach is not limited to tree (MST) or planar (PMFG and
TMFG) structures, which means a variety of networks with
different structural properties can be constructed by this ap-
proach (Aste et al., 2005). Furthermore, future methodological
advancements could be applied to identify the reliability of
edges kept in the network (Tumminello, Coronnello, Lillo,
Micciche, & Mantegna, 2007) and to reduce the number of
false positives included in the IFN networks.

Finally, our dataset was limited to cross-sectional samples,
which means our analyses were restricted to the group-level
and to a single time point. Despite our findings that the most
central nodes in the network predict increased liability for
schizophrenia-spectrum symptoms, it does not mean that this
holds across individuals. Similarly, singular time points are
ineffective at detecting the progression of schizophrenia-
spectrum liability over time, which would be valuable for
prevention and intervention. Experience sampling, for exam-
ple, would provide a perspective of schizotypy in daily life,
which could offer a developmental time course for future lia-
bility and decomposition into disorder (Chun, Barrantes-
Vidal, Sheinbaum, & Kwapil, 2017). Therefore, we echo the
call for future experimental designs to gather this type of data
to provide more detailed insights into the progression of
schizophrenia-spectrum liability at the individual-level
(Borsboom, 2017; Fried & Cramer, 2017; Guloksuz et al.,
2017; Wichers et al., 2017).

Conclusions

In summary, our findings provide improved insight into the
connections between the WSS-SF’s schizotypy factors and

define a more specific continuum of WSS-SF items that are
clinically relevant for schizophrenia-spectrum liability. We al-
so examined two network filtering approaches and found that
the IFN-based networks revealed more consistent, parsimoni-
ous, and predictive results. Moreover, we established the fea-
sibility of the IFN approach by demonstrating its ability to
provide less biased comparison and greater reproducibility in
cross-sectional samples than the lasso-based networks. Thus,
the IFN approach provides an alternative network approach in
psychometric network analysis and contributes to the ongoing
discussion of network reproducibility in this field.

Author note The authors thank Mircea Zloteanu for his valu-
able comments on previous versions of the manuscript.
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