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A B S T R A C T   

Older adults tend to have a broader vocabulary compared to younger adults – indicating a richer storage of 
semantic knowledge – but their retrieval abilities decline with age. Recent advances in quantitative methods 
based on network science have investigated the effect of aging on semantic memory structure. However, it is yet 
to be determined how this aging effect on semantic memory structure relates to its overall flexibility. Percolation 
analysis provides a quantitative measure of the flexibility of a semantic network, by examining how a semantic 
memory network is resistant to “attacks” or breaking apart. In this study, we incorporated percolation analyses to 
examine how semantic networks of younger and older adults break apart to investigate potential age-related 
differences in language production. We applied the percolation analysis to 3 independent sets of data (total N 
= 78 younger, 78 older adults) from which we generated semantic networks based on verbal fluency perfor-
mance. Across all 3 datasets, the percolation integrals of the younger adults were larger than older adults, 
indicating that older adults’ semantic networks were less flexible and broke down faster than the younger adults’. 
Our findings provide quantitative evidence for diminished flexibility in older adults’ semantic networks, despite 
the stability of semantic knowledge across the lifespan. This may be one contributing factor to age-related dif-
ferences in language production.   

1. Introduction 

Aging is associated with cognitive decline, and this decline is seen in 
a number of areas of cognition, such as speed, inhibition, and language 
production. Older adults need to adapt to these age-related deficits to 
better navigate everyday tasks – yet as individuals age, they tend to 
become less flexible and have increased difficulty adapting to new en-
vironments (i.e., declines in processing speed and cognitive control; 
Hasher, Lustig, & Zacks, 2008; Salthouse, 2010). In contrast, one ability 
that remains remarkably stable across the lifespan is semantic knowl-
edge or semantic memory (e.g., Park et al., 2002). However, semantic 
abilities are most often measured through vocabulary, and vocabulary 
inventories are typically un-timed, possibly minimizing age-related 
differences. Moreover, vocabulary inventories only assess knowledge 
of a relatively small sample of words, vastly underestimating the depth, 
breadth, and complexity of semantic knowledge. Words and their se-
mantic features have structure and inter-relations among them (e.g., 
they can be represented as networks; Siew, Wulff, Beckage, & Kenett, 
2019), which vocabulary inventories cannot capture. In the current 

study, we quantitatively examine, for the first time, the effect of aging on 
flexible thinking, by applying computational methods to estimate the 
flexibility of semantic memory structure of younger and older adults 
across three different samples. Specifically, we apply network science 
methods to estimate the semantic networks of these samples and 
examine the flexibility via a percolation analysis, which measures 
network resilience, or flexibility, by the process in which it breaks apart 
(Kenett et al., 2018), to further assess age-related decline. 

2. Aging, flexibility, and semantic memory 

Compared to the content of semantic knowledge, the structure of 
semantic knowledge may be even more relevant in aging, as older adults 
tend to have an equal or broader vocabulary compared to younger 
adults, indicating a richer storage of semantic knowledge (Kavé & 
Halamish, 2015; Kemper & Sumner, 2001; Park et al., 2002; Verhae-
ghen, 2003). Indeed, older adults show comparable performance to 
younger adults in a variety of semantic measures, including generating 
word associations (Bowles, Williams, & Poon, 1983; Burke & Peters, 
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1986) and semantic priming effects (Burke, White, & Diaz, 1987; 
Madden, Pierce, & Allen, 1993). Although this greater repository of 
knowledge could be advantageous, having more words to select from 
could also increase semantic selection difficulty. Indeed, recent work 
differentiates knowledge and executive aspects of semantics (Hoffman, 
Loginova, & Russell, 2018; Rodd, Gaskell, & Marslen-Wilson, 2004; 
Rogers, Patterson, Jefferies, & Lambone-Ralph, 2015). The controlled 
semantic cognition framework suggests that semantic cognition involves 
the interaction between conceptual knowledge and the control processes 
that guide retrieval (Rogers et al., 2015). Specifically, age-related 
decline has been observed when there is high semantic competition – 
older adults are less accurate than younger individuals (Hoffman, 2018) 
– indicating that older adults are most impaired in situations with 
heightened semantic selection demands. These results suggest that 
decline in executive control processes hinder older adults in semantic 
tasks that require fine-grained retrieval or selection of concepts. How-
ever, such decline may also be related to the structure of the semantic 
system, such that a less efficient structure of concepts within the se-
mantic system could contribute to retrieval difficulties (Klimesch, 
1987). 

Recent advances in computational methods, such as network science, 
are providing a means to study the development and change of the se-
mantic system during typical aging (Dubossarsky, De Deyne, & Hills, 
2017; Wulff, De Deyne, Jones, Mata, & Consortium, 2019; Wulff, Hills, 
& Mata, 2018). Network science provides a unifying framework to 
examine different aspects of semantic cognition, such as structural or-
ganization and search processes; it is based on graph theory, allowing 
the study of complex systems (such as semantic memory) as networks 
(Barabási, 2016). A network is comprised of nodes, that represent the 
basic unit of the system (e.g., concepts in semantic memory), and links 
(or edges), that signify the relations between them (e.g., semantic sim-
ilarity). Over the past two decades, a growing number of studies have 
used computational methods to represent and study cognitive systems as 
networks (Baronchelli, Ferrer-i-Cancho, Pastor-Satorras, Chater, & 
Christiansen, 2013; Borge-Holthoefer & Arenas, 2010; Castro & Siew, 
2020; Siew et al., 2019). For example, network science has tested the 
hypothesis that highly creative individuals have increased flexibility in 
their semantic memory structure (Kenett, Anaki, & Faust, 2014; Kenett 
& Faust, 2019), identified mechanisms of language development (Hills, 
Maouene, Maouene, Sheya, & Smith, 2009; Steyvers & Tenenbaum, 
2005), shed novel light on statistical learning (Karuza, Kahn, Thompson- 
Schill, & Bassett, 2017), shown how specific linguistic network prop-
erties influence memory retrieval (Kenett, Levi, Anaki, & Faust, 2017; 
Kumar, Balota, & Steyvers, 2019; Vitevitch, Chan, & Goldstein, 2014; 
Vitevitch, Chan, & Roodenrys, 2012), and provided insight into the 
structure of semantic memory of second language in bilinguals (Bor-
odkin, Kenett, Faust, & Mashal, 2016). 

Several recent studies have applied network science methodologies 
to test theories about how semantic memory structure might facilitate 
flexible thinking, such as creative cognition (Kenett & Faust, 2019). 
These studies have shown how differences in semantic memory structure 
relate to individual differences in creativity, both at the group level 
(Kenett et al., 2014; Kenett, Beaty, Silvia, Anaki, & Faust, 2016) and at 
the individual level (Benedek et al., 2017; Bernard, Kenett, Ovando- 
Tellez, Benedek, & Volle, 2019; He et al., 2020). In addition, the se-
mantic memory structure of highly creative individuals is characterized 
by a more flexible structure—i.e., higher connectivity and lower overall 
distances between concepts—likely permitting more efficient spreading 
of activation processes across a broader semantic space, leading to the 
generation of more novel ideas as activation tends to reach nodes in the 
network that are farther apart from each other (Kenett et al., 2018; 
Kenett & Faust, 2019). Therefore, these studies link flexible semantic 
memory structure with adaptable, creative thinking for younger adults. 
However, the connection between semantic structure and such flexible 
cognition has not been examined in the context of cognitive aging. 
Understanding how semantic networks change over the lifespan may 

help to explain the reduced cognitive flexibility that is often observed in 
aging (Dubossarsky et al., 2017; Wulff et al., 2019). 

Recent studies comparing the structure of semantic networks across 
the lifespan provide converging evidence that the size of semantic net-
works continuously expands (Wulff et al., 2019). These studies report 
structural properties of the lexicon that vary across different age cohorts 
(Dubossarsky et al., 2017; Wulff et al., 2018; Zortea, Menegola, Villa-
vicencio, & Salles, 2014) and find that concepts in older adults’ semantic 
memory are more modular (i.e., concepts have sparser semantic 
neighborhoods, which means that concepts in the network are less 
connected) and more segregated (any pair of concepts in the network is 
“further apart”) than those of younger adults. Dubossarsky et al. (2017) 
assessed how semantic networks differ across the lifespan (i.e. 10–84 
years) using free association data from 8,000 participants. The authors 
found non-linearities in semantic memory properties across the lifespan, 
such that semantic memory is sparsely organized in children, increases 
in density towards midlife, then is increasingly sparse among older 
adults (Dubossarsky et al., 2017). These findings, although cross- 
sectional in nature, are consistent with the idea of aging being associ-
ated with changes in the structure of the semantic system, providing 
insight into the structure of the lexicon across the lifespan. However, 
while additional studies related highly structured, segregated semantic 
memory structure to higher intelligence (Kenett, Beaty, et al., 2016), 
network segregation has also been related to decreased flexible thinking 
among younger adults (Faust & Kenett, 2014; Kenett, Gold, & Faust, 
2016; Siew, 2013). In relation to typical aging, it is yet to be determined 
how these changes in semantic memory structure relate to changes in 
flexible thinking. 

Recently, percolation theory, a computational approach that mea-
sures the resilience of complex networks by the process of removing 
nodes or edges, has been applied to semantic network research as a 
quantitative way of studying its flexibility (Borge-Holthoefer, Moreno, & 
Arenas, 2011; Kenett et al., 2018; Stella, 2020). These studies are based 
on the assumption that the more a system is resilient to attack, the more 
flexible it is (Cohen & Havlin, 2010; Saberi, 2015). Percolation analyses 
quantify the flexibility of complex networks under simulated targeted or 
random attacks, by analyzing the effect of removing nodes or links be-
tween nodes whose strength falls below an increasing threshold (Farkas, 
Ábel, Palla, & Vicsek, 2007; Palla, Derényi, Farkas, & Vicsek, 2005). 

A handful of empirical cognitive studies have applied percolation 
theory to study the resilience, or flexibility, of semantic memory struc-
ture in younger adults and clinical populations (Borge-Holthoefer et al., 
2011; Kenett et al., 2018; Stella, 2020). Kenett et al. (2018) applied a 
percolation analysis on the semantic network of low- and high-creative 
individuals (Kenett et al., 2014). Across these two groups, the semantic 
network of the high-creative individuals was more connected and less 
segregated than that of the low-creative group. Thus, the authors indi-
rectly inferred that the high-creative group had a more flexible semantic 
memory structure (Kenett et al., 2014). In conducting a percolation 
analysis on the semantic networks of these two groups, Kenett et al. 
(2018) found that the semantic network of the high-creative group 
broke apart more slowly in response to the network attacks, compared to 
the low-creative group. Thus, the authors argue that this finding in-
dicates that the semantic network of the high-creative group is more 
flexible than that of the low-creative group (Kenett et al., 2018). Thus, 
the authors demonstrated how a higher connected, less segregated se-
mantic memory network structure relates to heightened flexible 
thinking, and how percolation theory can be used to provide a quanti-
tative measure of cognitive flexibility. 

3. Present study 

While previous studies have found that older adults show stable or 
increased reserves of semantic knowledge (e.g., Burke & Shafto, 2008; 
Kavé & Halamish, 2015; Park et al., 2002), recent evidence indicates 
that the structure of semantic memory networks appears to differ across 
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the lifespan. Advances in network science have enabled investigating 
the effect of aging on semantic memory structure, showing that the se-
mantic network of older adults is more segregated compared to younger 
adults (Dubossarsky et al., 2017; Wulff et al., 2019; Wulff et al., 2018). 
Here we expand upon this recent work by applying network science and 
percolation analyses to examine age-related differences in the structure 
and flexibility of semantic memory networks. Understanding the factors 
that contribute to successful retention of semantic functions, and flexible 
behaviors such as communication abilities, across the lifespan is critical 
to successful aging. 

We estimated the semantic memory networks of younger and older 
participants from three different samples by analyzing their verbal 
fluency responses (Kenett et al., 2013). For each dataset, we grouped the 
data based on age (e.g., younger vs. older adults), estimated and 
compared the properties of the semantic networks of these groups, and 
applied percolation analyses to assess age-related differences. Aligning 
with previous research assessing semantic networks and aging (Wulff 
et al., 2019), we expected that older adults would have a more segre-
gated memory structure compared to younger adults. Aligning with 
previous research indicating loss of flexibility with aging (Salthouse, 
2010), we expected that older adults would have a semantic network 
that breaks apart faster than that of younger adults, i.e., less flexible. 

4. Methods 

4.1. Participants 

All participants across all three datasets were healthy, native English 
speakers. Demographic information from the datasets reflected the 
populations from which they were drawn (e.g., Dataset 1 (75% Cauca-
sian (non-Hispanic), 13% Black or African American, 5% American In-
dian/ Native Alaskan, 3% Asian, and 3% prefer not to answer) who were 
recruited from Greensboro, North Carolina and a less diverse sample of 
mainly non-Hispanic Caucasians (>90%) for Datasets 2 & 3 who were 
recruited from central Pennsylvania). None reported history of neuro-
logical or physiological disorders, or major medical conditions (e.g., 
cancer, diabetes, heart disease). The first dataset, Dataset 1, was 
collected as part of a larger study on aging and creative thinking at the 
University of North Carolina at Greensboro (UNCG) and was approved 
by the Institutional Review Board (IRB) of UNCG. This dataset consisted 
of 56 participants, 28 younger (mean age = 21, SD = 2.79, males = 8, 
females = 20) and 28 older adults (mean age = 69.79, SD = 3.44, males 
= 13, females = 15). Datasets 2 and 3 were collected as part of two larger 
research studies at the Pennsylvania State University (Diaz, Karimi, 
et al., 2021; Diaz, Zhang, et al., 2020). All participants who chose to take 
part in these studies provided written informed consent and all experi-
mental procedures were approved by the Pennsylvania State University 
IRB. The participant group of the second dataset, Dataset 2, included 50 
participants, 25 younger (mean age = 28.84, SD = 5.83, males = 10, 
females = 15) and 25 older adults (mean age = 63.52, SD = 6.53, males 
= 9, females = 16). The participant group of the third dataset, Dataset 3, 
also comprised 50 adults, 25 younger (mean age = 24.4, SD = 3.7, males 
= 11, females = 14) and 25 older (mean age = 67.92, SD = 3.93, males 
= 11, females = 14). 

4.2. Materials 

4.2.1. Semantic fluency task 
Participants completed a categorical verbal fluency task (listing an-

imals). This task provides an efficient means to investigate people’s 
ability to retrieve semantic information from long-term memory (Ardila, 
Ostrosky-Solís, & Bernal, 2006; Bousfield, Cohen, & Whitmarsh, 1958; 
Goñi et al., 2011; Patterson, 2011), and it is widely used to model group- 
based semantic networks (Siew et al., 2019). Although this one category 
represents a small sampling of the participants’ overall semantic space, 
recent research examining a wide array of categories (>70) suggests that 

there is age and cohort stability in the exemplars that healthy adult 
participants produce, particularly among more basic categories like 
‘animals’ (Castro, Curley, & Hertzog, 2020). According to standard 
procedures (Ardila et al., 2006) participants were given 60 s to speak 
aloud (Datasets 2 and 3) or type (Dataset 1) as many different animal 
category members as they could (Table 1 displays the average number of 
items produced per age group for each dataset). We also assessed vo-
cabulary knowledge of the older and younger adults in Datasets 2 and 3 
using the WAIS vocabulary test (Wechsler, 2008). There were no sig-
nificant age-related differences in vocabulary knowledge in these two 
datasets (all p’s > 0.1). 

5. Network analysis 

The semantic fluency data of all age groups were analyzed using a 
semantic network approach (Borodkin et al., 2016; Kenett et al., 2013). 
In this approach, each node represents a category exemplar (e.g., frog) 
and edges represent associations between two exemplars. These asso-
ciations are the tendency of the sample to generate exemplar b (e.g., 
toad) when they have also generated exemplar a (e.g., frog). All network 
analyses were conducted in R using a publicly-available pipeline to 
analyze semantic fluency data as networks (Christensen & Kenett, 
2019), with the following steps: 

5.1. Network estimation 

First, the SemNetDictionaries (Christensen, 2019b) and SemNetCleaner 
(Christensen, 2019a) R packages were used to preprocess participants’ 
verbal fluency data. Participant repetitions (responses given by a 
participant more than once) and non-category members (e.g., alien, 
unicorn, beehive) were removed. Very few repetitions were produced 
(Dataset 1 = 0.53%, Dataset 2 = 1.95%, Dataset 3 = 1.13%) and these 
were produced by both younger and older adults. Other potential errors 
were corrected, including spelling errors, compound responses (i.e., 
responses where a space is missing between responses), variation on the 
same root word (e.g., cats to cat), and continuous strings (i.e., multiple 
responses entered as a single response). Next, the data were transferred 
into a binary response matrix, where columns represent the unique ex-
emplars given by the sample and rows represent participants; the 
response matrix is filled out by 1 (if an exemplar was generated by that 
participant) and 0 (if that exemplar was not). The SemNetCleaner 
package (Christensen, 2019a) was used to further process the binary 
response matrix into a finalized format for network estimation. To 
control for confounding factors (such as different nodes or edges in both 
groups), as in previous studies (Borodkin et al., 2016; Christensen, 
Kenett, Cotter, Beaty, & Silvia, 2018) the binary response matrices only 
included responses that were given by at least two participants in each 
group. Then, to avoid the two groups including a different number of 
nodes, which may bias comparisons of network parameters (van Wijk, 
Stam, & Daffertshofer, 2010), responses in the binary matrices were 
equated, so that the networks of both groups in each sample were 
compared using the same nodes. After equating the networks across the 
two age groups, Dataset 1 had 45 nodes per network, Dataset 2 had 53 
nodes per network, and Dataset 3 had 66 nodes per network. 

Next, the SemNeT package (Christensen, 2019a) was used to compute 
the association profiles of verbal fluency responses. We used the cosine 
similarity function in this package to estimate the edges between nodes. 
The cosine similarity function is commonly used in latent semantic 

Table 1 
Number of verbal fluency responses for younger and older adult groups across 
the three datasets (standard deviation in parentheses).   

Dataset 1 Dataset 2 Dataset 3 

Younger 20.79 (3.58) 22.52 (5.07) 24.92 (5.16) 
Older 12.57 (3.04) 19.2 (4.76) 21.28 (5.9)  
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analysis of textual-corpora (Landauer & Dumais, 1997) and is related to 
Pearson’s correlation, which can be considered as the cosine between 
two normalized vectors. Unlike Pearson’s correlation, the cosine simi-
larity ranges from 0 to 1 because it is based on the co-occurrence of 
responses. If two responses do not co-occur, then the cosine similarity is 
0; if they always co-occur, then the cosine similarity is 1. Therefore, the 
associations were all positive, which has the advantage of not assuming 
that the lack of co-occurrence suggests a negative association between 
two responses (whereas Pearson’s correlation carries that potential). 
The word similarity matrix was then examined as an n x n adjacency 
matrix of a weighted, undirected network, where each word represented 
a node in the network and the edges between two nodes represented the 
similarity between them. 

To minimize possible spurious associations, we applied the Trian-
gulated Maximally Filtered Graph (TMFG; Christensen, Kenett, Aste, 
Silvia, & Kwapil, 2018; Massara, Di Matteo, & Aste, 2016). The TMFG 
captures the most relevant information (i.e., minimizing spurious re-
lations and retaining high correlations) within the original network. 
This approach retains the same number of edges between the groups, 
which avoids the confound of different network structures being due to a 
different number of edges (Christensen, Kenett, Aste, et al., 2018). Thus, 
the networks constructed by this approach can be directly compared 
because they have an equivalent number of nodes and edges. The TMFG 
method was applied using the NetworkToolbox package (Christensen, 
2018) in R. In examining the structure of the networks, the edge 
weighting was retained as this information was required for the perco-
lation analysis. Although it is possible to binarize the edge weights, 
weighted and unweighted semantic networks often correlate with one 
another (Abbott, Austerweil, & Griffiths, 2015). 

5.2. Network analysis 

The NetworkToolbox package was used to analyze the network 
properties. We incorporated three commonly used graph theory mea-
sures: (a) clustering coefficient, (b) average shortest path length, and (c) 
modularity index. Clustering coefficient refers to the extent that neighbors 
of a node will themselves be neighbors (i.e., a neighbor is a node i that is 
connected through an edge to node j). A higher clustering coefficient 
indicates a more interconnected semantic network (Siew et al., 2019). 
Average shortest path length refers to the average shortest number of steps 
(i.e., edges) needed to traverse between any pair of nodes; the higher the 
average shortest path length, the more spread out a network is. Previous 
research on semantics has shown that the shortest path length in se-
mantic networks corresponds to participants’ judgments as to whether 
two concepts are related to each other (Kenett et al., 2017; Kumar, 
Balota, & Steyvers, 2019). Modularity estimates how a network breaks 
apart (or partitions) into smaller sub-networks or communities (For-
tunato, 2010). It measures the extent to which the network has dense 
connections between nodes within a community and sparse (or few) 
connections between nodes in different communities. Thus, the higher 
the modularity, the more the network breaks apart to subcommunities. 
Such subcommunities can be thought of as subcategories in a semantic 
network (e.g., farm animals in the ‘animals’ category). Previous research 
has shown that modularity in semantic networks is inversely related to a 
network’s flexibility (Kenett, Gold, et al., 2016; Kenett et al., 2018). 

5.3. Statistical analysis 

We used two complementary approaches to statistically examine the 
validity of the results. First, we simulated random networks for each age 
group (separately, for each dataset) to statistically test whether the 
network parameters were different from a sampling of random networks 
with the same nodes and edges (Steyvers & Tenenbaum, 2005). To this 
end, we generated a large sample of Erdös-Rényi random networks with 
a fixed edge probability (Erdös & Rényi, 1960) and compared the 
empirical network measures of both groups to this random distribution. 

Significant differences in tests against random networks show that there 
is a purposeful, non-random structure in a semantic network. For each 
simulated random network, we computed its clustering coefficient, 
average shortest path length, and modularity. This procedure was 
simulated 1,000 times to achieve a random reference distribution for 
each measure. The empirical network measures were then compared to 
their reference distribution to evaluate their statistical significance. This 
was achieved via a one-sample Z-test for each network parameter. 

Second, for each dataset, we used a bootstrapping approach (Efron, 
1979) to simulate and compare partial younger adult and older adult 
semantic networks using the SemNetCleaner package in R (Christensen, 
2019a). Based on previous studies (Borodkin et al., 2016; Christensen, 
Kenett, Cotter, et al., 2018; Kenett, Beaty, et al., 2016), the boot-
strapping procedure involves a random selection of half of a network’s 
nodes. The bootstrapping approach examines the consistency of the ef-
fect within the network under the rationale that if the full networks 
differ from each other, then any partial networks containing the same 
nodes should also be different. This method also tests whether any age 
differences are simply due to chance. Partial networks were constructed 
for each semantic network separately for these selected nodes. This 
method is known as the without-replacement bootstrap method (Bertail, 
1997). Finally, for each partial network, the clustering coefficient, 
average shortest path length, and the modularity measures were 
computed. This procedure was simulated 1,000 times. The difference 
between the bootstrapped partial networks on each network measure for 
each dataset was then tested with independent samples t-test 
comparisons. 

5.4. Percolation analysis 

The percolation analysis was conducted using the CliquePercolation 
package in R (https://CRAN.R-project.org/package=CliquePercol 
ation), which applied the percolation algorithm to the semantic net-
works of the younger and older participants across all datasets (as 
described in Farkas et al., 2007; Palla et al., 2005). The clique perco-
lation method identifies overlapping communities, or subgraphs, of an 
entire weighted network (Farkas et al., 2007). For this analysis, we used 
the weighted semantic networks of the younger and older adult groups. 
Based on these network structures, we defined the number of k-cliques, 
or the fully connected networks of ‘k’ nodes. A community of k nodes are 
k-cliques that share at least one overlapping node. We used the `esti-
mateNetwork` function from the bootnet package in R (Epskamp, Bors-
boom, & Fried, 2018) and then we used these estimated networks to 
calculate the optimal number of k-clique communities for the younger 
and older adult networks. Applying k = 3, the smallest possible size of k- 
cliques, to our analyses allowed for sensitivity to the smallest possible 
communities. These k-cliques were considered further only if their In-
tensity (I, strength) surpassed a specific I threshold, indicating the 
weighted connection between words is stronger than the threshold 
(Farkas et al., 2007).1 Based on the varied edge connections between 
nodes in weighted networks, the optimal I range for our analyses was 
(0.01, 1), reflecting the minimum and maximum values of semantic 
relatedness, respectively. We then removed any overlapping connec-
tions between communities of semantically related words that fell below 
an increasing threshold until the networks became maximally 
fragmented. 

Next, we calculated the Area Under the Curve (AUC) by calculating 
the number of connected nodes in the semantic networks across a range 
of thresholding values between when the I threshold equaled 0.01 (i.e., 

1 In unweighted networks, there is a fixed weight threshold, W, and all links 
in the module must have weights higher than the link weight threshold W (Palla 
et al., 2005). Weighted networks, on the other hand, use intensity thresholds, I, 
and the links in these networks often contain links with weaker connections 
than the intensity threshold I (Farkas et al., 2007). 
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the minimum threshold, all connections will exceed this and be 
included) to when the I threshold equaled 1 (i.e., the maximum 
threshold, all nodes will not exceed this and will be excluded). This 
allowed us to compute the percolation integral, or how fast components in 
the network broke apart from the ‘giant component’ – the maximal 
number of nodes that are connected to each other in the network (Kenett 
et al., 2018). For example, a network that breaks apart quickly (at lower 
thresholds) will have a steeper percolation slope and a lower integral 
value. To test the significance of the clique percolation analysis between 
younger and older adults, we conducted 500 realizations of the perco-
lation test, comparing the structure of semantic connections between the 
nodes from the younger and older adult semantic networks. In each 
iteration, we calculated the percolation integral for each network and 
then ran independent-sample t-test analyses to determine if the integral 
means of the two age groups were significantly different (Kenett et al., 
2018). 

6. Results 

6.1. Verbal fluency performance 

Before analyzing the semantic networks of younger and older adults, 
we assessed their performance on the verbal fluency task. We thus 
computed independent-samples t-test analyses on the number of items 
produced on the categorical verbal fluency task between the two age 
group across the three datasets (Table 1). For all datasets, we found that 
the younger adults produced significantly more items than the older 
adults – in Dataset 1 t(54) = 9.25, p < 0.001, Dataset 2 t(48) = 2.39, p =
0.02, and Dataset 3 t(48) = 2.32, p < 0.001 – replicating previous work 
on verbal fluency and aging (Clark et al., 2009; Park et al., 2002). 
Importantly, these age-group differences were controlled for by 
equating the responses across groups for each dataset’s network (see 
Network Estimation section for additional details). 

6.2. Older adults have more segregated and less efficient semantic 
networks than younger adults 

Next, we estimated the semantic networks of the younger and older 
participants across the three datasets. To visualize the networks (Fig. 1), 
we applied the force-directed layout (Fruchterman & Reingold, 1991) of 
the Cytoscape software (Shannon et al., 2003). In these 2D visualiza-
tions, nodes are represented by the respective circles and edges between 
them are represented by lines. Since these networks are undirected and 
weighted, the edges convey symmetrical (i.e., bidirectional) similarities 
between two nodes. 

To statistically validate our results, we incorporated two compli-
mentary statistical significance testing methods. First, we compared our 
modeled semantic networks to randomly generated graphs. Across all 
three datasets, the simulated random network analysis revealed that the 
graph theory metrics (average shortest path length, clustering coeffi-
cient, and modularity) for the younger and older adult groups were 
statistically different from random networks (all p’s < 0.001). 

The group-based network analysis computes a single value for each 
network measure for the different age groups. To statistically examine 
the differences between the younger and older adults’ networks, we 
applied a bootstrapped partial networks analysis (Bertail, 1997; Kenett 
et al., 2014) to generate a distribution of values for each of the network 
measures that were derived from a subset of the empirical data (see 
Methods for more details). This resulted in a sample distribution of 
1,000 samples for all measures (clustering coefficient, average shortest 
path length, and modularity) for each network (Fig. 3). An independent 
samples t-test was conducted on each network measure to analyze the 
differences between the bootstrapped partial networks of the younger 
and older adults (Fig. 2): 

6.3. Clustering coefficient 

For Dataset 1, our analysis revealed that younger adults had a higher 
clustering coefficient compared with older adults, t(1998) = − 22.59, p 
< 0.001. Aligning with Dataset 1, our analysis of Dataset 2 revealed that 

Fig. 1. A 2D Visualization of the semantic networks of younger and older adult groups across the three datasets. Here, each circle represents a word (node), and lines 
represent connections between word nodes. A section of the graph has been highlighted to illustrate the connections among words in this section of the network. 
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younger adults had a higher clustering coefficient compared with older 
adults, t(1998) = − 8.34, p < 0.001. In contrast to the first two datasets, 
there were no group differences for clustering coefficient between 
younger and older adults in Dataset 3, t(1998) = − 6.81, p = 0.31. 

6.4. Average shortest path length 

In Dataset 1, younger adults had a lower average shortest path length 
when compared with older adults, t(1998) = 26.59, p < 0.001. In 
Dataset 2, younger adults also had a lower average shortest path length 
compared with older adults, t(1998) = 2.85, p = 0.004. However, the 

Fig. 2. The results from the partial network analysis for clustering coefficient (left), average shortest path length (center), and modularity (right) for the younger and 
older adult groups across the three datasets. X-axis – age groups across the three datasets. Y-axis – dependent variables (clustering coefficient, average shortest path 
length, and modularity; Error bars denote standard error). 

Fig. 3. A comparison between a fully connected semantic network of the younger adult group in Dataset 2 (left) and the same semantic network after increasing the 
intensity threshold to 50% (right). Edge thickness denotes connectivity weight strength between two nodes (words) in the semantic network (i.e., the thicker the 
edges, the stronger the connection). 
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younger adults in Dataset 3 showed a higher average shortest path 
length when compared with older adults, t(1998) = − 3.90, p < 0.001. 

6.5. Modularity 

In both Datasets 1 and 2, younger adults had lower modularity values 
compared to older adults, t(1998) = 22.42, p < 0.001; t(1998) = 5.59, p 
< 0.001, respectively. Dataset 3 showed that younger adults had higher 
modularity values compared to older adults, t(1998) = 1.01, p < 0.001. 

Overall, the results from the three datasets indicated that the se-
mantic network structures of younger and older adults were signifi-
cantly different. Datasets 1 and 2 consistently showed that the networks 
of younger adults exhibited higher levels of efficiency as measured by 
shorter path lengths and greater interconnectedness as measured by 
higher clustering coefficient, compared to older adults (Dubossarsky 
et al., 2017; Latora & Marchiori, 2001). Alternatively, the semantic 
networks of older adults exhibited increased community structure, or 
higher modularity values. Dataset 3 results were somewhat unexpected 
such that younger adults showed longer average shortest path lengths, 
increased modularity, and there were no significant group differences in 
clustering coefficient. This unexpected finding from Dataset 3 remains 
somewhat surprising given that Datasets 2 and 3 were collected from the 
same overall community using the same laboratory setting and pro-
cedures. These results are discussed further in the Discussion section 
below. 

6.6. Older adults’ semantic networks break apart faster and are less 
flexible than younger adults 

For each dataset, we conducted a clique percolation analysis on the 
weighted semantic networks of the two age groups to examine the 
flexibility of the semantic networks. Fig. 3 shows a comparison between 
a fully connected younger adult semantic network and the younger adult 
semantic network after thresholding to 50% (Dataset 2). 

To assess age group differences, we examined the area under the 
curve and the percolation integral for the younger and older adults’ 
semantic networks. To test for statistical significance, we ran 500 re-
alizations of the percolation test. We conducted independent-samples t- 
test analyses on the distribution of percolation integrals between the 
semantic networks of the younger and older adult groups (Fig. 4). 

Dataset 1: Our analysis revealed that the average percolation inte-
gral of the younger adult group (M = 28.88, SD = 0.98) was larger than 

that of the older adult group (M = 28.29, SD = 1.06), t(998) = 9.07, p <
0.001. The effect size for this analysis (d = 0.62) was found to exceed 
Cohen and Murphy’s (1984) convention for a medium effect (d = 0.50). 

Dataset 2: Our analysis revealed that the average percolation inte-
gral of the younger adult group (M = 35.1, SD = 1.02) was larger than 
that of the older adult group (M = 33.95, SD = 1.06), t(998) = 18.70, p 
< 0.001). The effect size for this analysis (d = 1.19) was found to exceed 
Cohen and Murphy’s (1984) convention for a large effect (d = 0.80). 

Dataset 3: Our analysis revealed that the average percolation inte-
gral of the younger adult group (M = 43.61, SD = 1.06) was larger than 
that of the older adult group (M = 41.82, SD = 1.13), t(998) = 27.5, p <
0.001. The effect size for this analysis (d = 1.58) was found to exceed 
Cohen and Murphy’s (1984) convention for a large effect (d = 0.80). 

These results provide consistent evidence that the semantic networks 
of older adults broke apart faster than the networks of younger adults, 
indicating less flexibility within the semantic networks of older adults. 
Notably, the percolation results replicated across all three datasets, 
despite the variability in network properties found in Dataset 3. 

7. Discussion 

In this study, we apply computational network science and perco-
lation analyses to quantitatively examine the effects of semantic 
network structure on healthy aging, and specifically the connection 
between flexibility and the aging mental lexicon. We assessed the se-
mantic networks of younger and older adults via network science 
methods and percolation analyses (Kenett et al., 2018; Siew et al., 2019). 
As hypothesized, we observed that younger adults had more inter-
connected and efficiently-organized semantic networks than older 
adults, as assessed by clustering coefficient, average shortest path 
length, and modularity in two of the three datasets analyzed. Further-
more, the percolation analysis provided a measurement of flexibility of 
the semantic networks. As predicted, the semantic networks of the 
younger adults were more flexible and resilient to the percolation pro-
cess compared to the older adults’ semantic networks—a finding that 
replicated across all three datasets. Taken together, our results provide 
insight into the structure of semantic networks in healthy aging, with 
implications for understanding the development of flexible thinking 
across the lifespan. 

Fig. 4. a: Comparison of the percolation integrals between younger and older adults across the three datasets. The number of nodes in each dataset differs – Dataset 1 
has 45 nodes, Dataset 2 has 53 nodes, and Dataset 3 has 66 nodes. b: An example of the number of connected nodes in the network at increasing intensity thresholds 
(I) for younger and older adults. 
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7.1. Older adults have more segregated and less efficient semantic 
networks than younger adults 

Overall, the semantic network structures of younger adults were 
significantly more efficient, i.e., less segregated and more flexible than 
older adults. In our modeling of semantic networks, we assessed the 
organization of animal words in the mental lexicon of younger and older 
adults using verbal fluency data. We used a bootstrapping technique to 
estimate partial networks using half of the nodes for the older and 
younger adult networks. Datasets 1 and 2 results showed that younger 
adults had higher levels of network efficiency (lower average shortest 
path lengths), less segregation of sub-communities (lower modularity 
values), and greater connectivity (higher clustering coefficients) than 
older adults. These network property results generally reflect higher 
efficiency in network structure. Research in creativity has shown that a 
more efficient and flexible semantic memory structure is associated with 
higher levels of creativity (Kenett & Faust, 2019; Latora & Marchiori, 
2001). While Dataset 3 was not consistent with the other two datasets, 
the verbal fluency responses of each dataset were fairly consistent, the 
age ranges were similar, and the community sample was from the same 
location as Dataset 2. Critically, despite this disparate observation in the 
network measures from one sample, the percolation analysis yielded 
consistent results across all three samples, indicating that age-related 
differences in network flexibility can be reliably uncovered, despite 
some variation in overall network structure. 

The age-related differences for clustering coefficient, average 
shortest path length, and modularity reflect variance in network effi-
ciency and interconnectedness (He et al., 2020; Latora & Marchiori, 
2001). In sparsely connected networks (i.e., older adults), the shortest 
path between two nodes requires more steps than in a well-connected 
network, making the network less efficient (Latora & Marchiori, 
2001). Modularity assesses the network’s interconnectedness through 
sub-communities. These communities consist of densely connected 
clusters which share overlapping connections within the module (For-
tunato, 2010). While segregation among communities can create smaller 
networks, higher levels of segregation (as was seen in the semantic 
networks of older adults) may make integrating information more 
difficult, which can be especially problematic in the case of semantic 
associations where words can share multiple, overlapping characteris-
tics, leading to increased competition among similar concepts. In addi-
tion, clustering coefficient measures the extent to which nodes of a 
network cluster together and how they are organized in a network (Siew 
et al., 2019), and lower clustering coefficient in semantic networks has 
been related to poorer performance on recall tasks (Nelson, Bennett, 
Gee, Schreiber, & McKinney, 1993). Prior studies have also found that 
older adults’ semantic networks are characterized by higher average 
shortest path length and lower clustering coefficient (Dubossarsky et al., 
2017; Wulff et al., 2018; Wulff, Hills, & Hertwig, 2013)—indicating a 
less efficient and more segregated network—consistent with our find-
ings for Datasets 1 and 2. 

7.2. Older adults’ semantic networks break apart faster and are less 
flexible than younger adults 

Our study quantitatively assessed the flexibility of semantic memory 
as it relates to aging. The percolation analysis provides a quantitative 
measure of the flexibility of a network, and it can be used to examine 
flexibility of thought as well as the cognitive declines associated with 
aging (Kenett et al., 2018). Our analyses consistently found that across 
the three datasets, the younger adult semantic network percolation in-
tegral was larger than the older adult percolation integral. That is, the 
structure of the older adult groups’ semantic networks broke down 
faster as intensity thresholds increased, indicating a less flexible network 
structure compared to the younger adult group. 

While the percolation approach to measuring flexibility in thought 
remains an influential tool to study the cognitive differences associated 

with aging, only a handful of studies have utilized this technique. For 
example, Borge-Holthoefer et al. (2011) applied percolation analysis to 
examine the effects of Alzheimer’s disease on semantic processing. 
Focusing on semantic deficits caused by disrupted search processes, the 
researchers simulated the degradation process of healthy semantic 
priming and hyperprimed networks typically exhibited by Alzheimer’s 
patients. The researchers compared their simulated networks to empir-
ical evidence from Alzheimer’s patients and found qualitative agree-
ment, concluding that network modeling is an appropriate approach. 

In addition, percolation analysis has been applied to quantitatively 
operationalize the notion of flexibility inherent in creativity theory. 
Kenett et al. (2018) applied percolation analysis to the semantic net-
works of low- and high-creative individuals, previously investigated by 
Kenett et al. (2014). This previous investigation revealed that the high- 
creative semantic network had higher clustering coefficient and lower 
average shortest path length and modularity, which the authors inferred 
as indicating a more flexible semantic network. The percolation analysis 
applied by Kenett et al. (2018) revealed that the semantic network of the 
high-creative group broke apart slower than that of the less-creative 
group, thus directly supporting the high-creative group having a more 
flexible semantic memory structure (Kenett et al., 2018). In line with 
these results, our study reveals that younger adults’ networks break 
apart slower than older adults, thus the semantic network of younger 
adults is more flexible. Stella (2020) used a similar percolation method 
to quantify the flexibility of the mental lexicon to concept failures, 
aphasic degradation, and aging. This study highlighted that across the 
lifespan, the mental lexicon is fragile against multiplex (combined se-
mantic and phonological) attacks. 

Networks that break apart faster, or at lower thresholds, have weaker 
connectivity between words. This notion of weakening connection 
strength relates to the transmission-deficit hypothesis (Burke, MacKay, 
Worthley, & Wade, 1991). The transmission-deficit hypothesis suggests 
that as connections between nodes weaken with increasing age, acti-
vation between semantic and lexical representations is affected. 
Although this hypothesis focuses on weaker links in phonological rep-
resentations as being the key mechanism in age-related language pro-
duction impairments, it does acknowledge that all links weaken over 
time. While age-related differences in semantic processes are not 
commonly observed, several recent studies have observed age-related 
semantic deficits in tasks that tap into executive aspects of semantics, 
such as semantic control or semantic selection (Hoffman, 2018; Hoff-
man, Loginova, and Russell, 2018). 

The controlled semantic cognition framework highlights the 
distinction between knowledge and selection processes (Hoffman, 
McClelland, & Lambon Ralph, 2018; Rogers et al., 2015). Robust orga-
nization of a semantic network can relate to both semantic knowledge 
(structure) and how one uses or traverses through that knowledge 
(process). In the current analyses, potential differences in process were 
controlled to some extent by using only nodes that were common across 
both younger and older participants. Since the same words were used to 
create the semantic networks in the percolation analysis, it is unlikely 
that the age difference that we observed reflects differences in knowl-
edge. In fact, the WAIS vocabulary scores from our sample of older and 
younger adults in Datasets 2 and 3 did not show age-related differences 
in vocabulary knowledge. This suggests that the network differences 
that we found do not differ in the breadth of vocabulary, but point to 
age-related structural differences in the networks themselves. Moreover, 
our results indicate that there are age-related differences in how the 
communities of words in our semantic networks connect to each other. 

While our analyses speak most directly to the structure of the 
network, our findings may also be related to search processes (i.e., how 
information traverses through the network). That is, our semantic 
network analyses were based on verbal fluency performance which re-
quires each participant to utilize search processes within a specific 
category. It is possible that age-related differences in these search pro-
cesses led to the differences we observed in the structure of semantic 
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memory (Jones, Hills, & Todd, 2015). Indeed, older adults have been 
found to switch between local and global contexts more often during a 
verbal fluency task and this age-related increase in switching was 
negatively correlated with performance on a digit span task, suggesting 
that these changes were due to working memory declines (Hills, Mata, 
Wilke, & Samanez-Larkin, 2013). 

8. Limitations 

Process and structure are both integral to semantic memory, yet it is 
possible to examine structure and process separately (Siew et al., 2019). 
Future investigations could examine the underlying search processes in 
semantic networks by measuring the order in which words are produced 
or the semantic distances between words (e.g., with a forward flow 
analysis, Gray et al., 2019). In addition to analysis techniques to assess 
search processing, future work should use tasks that rely less on 
controlled retrieval (i.e., verbal fluency), such as semantic judgement 
tasks. 

Although our results consistently demonstrated age-related differ-
ences in the flexibility of younger and older adults semantic networks, 
there are a few limitations common to network science research (Wulff 
et al., 2019). We would have liked to make a direct comparison between 
individual differences and the percolation analysis results, however, one 
limitation of the clique percolation technique in this context is that it 
requires a group comparison, and therefore we were unable to examine 
individual differences. Future research should examine semantic 
network percolation analyses at the individual level to provide greater 
insight towards how semantic network flexibility relates to individual 
differences in aging. Additionally, future research should focus on 
connecting individual variation in other cognitive processes affected by 
aging, such as vocabulary knowledge, inhibitory control, executive 
functioning, and processing speed, to the flexibility measures that 
network science and percolation analyses provide. 

Additionally, although our results suggest age-related differences in 
semantic networks, it’s possible that these age group differences were 
driven by older adults’ lower mental flexibility in general instead of a 
specific deficit in semantic flexibility. Indeed, the verbal fluency task, on 
which our analyses are based, is directly related to executive aspects of 
language such as semantic selection. To this end, a post-hoc analysis of 
executive control data from Datasets 2 and 3 revealed that older adults 
had longer response times on a Digit Symbol task and larger Stroop ef-
fect sizes compared to younger adults (see Appendix A). This suggests 
that our older adults had multiple cognitive differences. Although we 
control for this to some extent by examining only the words that both 

younger and older adults produced, age-related differences in executive 
function may have also contributed to the differences we observed here. 

9. Conclusion 

To summarize, the present study investigated the semantic network 
structure of older and younger adults. Using network science measures, 
we found differences in the semantic network structure: younger adults 
had higher levels of network efficiency, less segregation of sub- 
communities, and greater flexibility. Moreover, across the three data-
sets, the percolation analysis consistently found that older adults’ se-
mantic networks broke apart faster than younger adults’. Older adults’ 
semantic networks were thus less flexible compared to younger adults’, 
a finding with potential implications for age-related differences in lan-
guage production. Specifically, this decreased efficiency and flexibility 
in semantic networks of older adults could be linked to behavioral 
performance in retrieval difficulty (Burke et al., 1991). Our findings 
provide quantitative evidence for diminished flexibility in older adults’ 
semantic networks, despite the stability of other measures of semantic 
memory across the lifespan. 

While our results most directly speak to semantic memory network 
structure, these findings very well may relate to the processes underly-
ing semantic memory, as structural efficiency likely influences pro-
cessing. To this point, the controlled semantic cognition model provides 
support for the idea that semantic cognition involves the interaction 
between several different aspects of semantics (Rogers et al., 2015), 
lending support to our idea that network structure constrains the search 
processes needed to effectively recall words for successful communica-
tion. While more research is needed to examine how structure and 
process interact, our results provide further insight to the aging mental 
lexicon. Our results demonstrate that although older adults demonstrate 
stability in the size and breadth of their lexicon, older adults have less 
flexible and less resilient semantic networks compared to younger in-
dividuals, which may play a role in age-related declines in flexible be-
haviors such as language production difficulties. 
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Appendix A  

Dataset 2 YA Mean OA Mean t Stat p Value 

Stroop Effect − 20.538 − 81.504 4.129 <0.001 
Digit Symbol 1268.823 1846.794 − 8.183 <0.001   

Dataset 3 YA Mean OA Mean t Stat p Value 

Stroop Effect − 31.505 − 111.302 3.476 <0.001 
Digit Symbol 1318.755 1971.391 − 6.625 <0.001 

We conducted post-hoc analyses on the executive control ability of younger and older adults for Datasets 2 and 3 – 
specifically, performance on the Digit Symbols and Stroop tasks. Independent-samples t-test analyses on the two 
datasets revealed that for both datasets, older adults had longer response times on the Digit symbol task and larger 
Stroop effects. 
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