
The Semantic Distance Task: Quantifying Semantic Distance With
Semantic Network Path Length

Yoed N. Kenett
University of Pennsylvania

Effi Levi
The Hebrew University at Jerusalem

David Anaki and Miriam Faust
Bar-Ilan University

Semantic distance is a determining factor in cognitive processes, such as semantic priming, operating
upon semantic memory. The main computational approach to compute semantic distance is through latent
semantic analysis (LSA). However, objections have been raised against this approach, mainly in its
failure at predicting semantic priming. We propose a novel approach to computing semantic distance,
based on network science methodology. Path length in a semantic network represents the amount of steps
needed to traverse from 1 word in the network to the other. We examine whether path length can be used
as a measure of semantic distance, by investigating how path length affect performance in a semantic
relatedness judgment task and recall from memory. Our results show a differential effect on performance:
Up to 4 steps separating between word-pairs, participants exhibit an increase in reaction time (RT) and
decrease in the percentage of word-pairs judged as related. From 4 steps onward, participants exhibit a
significant decrease in RT and the word-pairs are dominantly judged as unrelated. Furthermore, we show
that as path length between word-pairs increases, success in free- and cued-recall decreases. Finally, we
demonstrate how our measure outperforms computational methods measuring semantic distance (LSA
and positive pointwise mutual information) in predicting participants RT and subjective judgments of
semantic strength. Thus, we provide a computational alternative to computing semantic distance.
Furthermore, this approach addresses key issues in cognitive theory, namely the breadth of the spreading
activation process and the effect of semantic distance on memory retrieval.
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Semantic priming is a central concept in language and memory
research (Jones & Estes, 2012; Lerner, Bentin, & Shriki, 2014;
McNamara, 2005; Meyer & Schvaneveldt, 1971; Neely, 1991). It
refers to the finding that a target word (e.g., tiger) is processed
faster and more accurately when it is preceded by a related prime
word (e.g., lion) than when it is preceded by an unrelated prime
word (e.g., radio). It is generally agreed that semantic priming is

attributable to either associative relations, semantic feature over-
lap, or a mixture of both, between prime and target (Hutchison,
2003; Hutchison, Balota, Cortese, & Watson, 2008; Lerner &
Shriki, 2014; Lucas, 2000; Masson, 1995; Thompson-Schill,
Kurtz, & Gabrieli, 1998).

The cognitive mechanism, considered to enable semantic prim-
ing, is based on spreading activation models (Anderson, 1983;
Collins & Loftus, 1975; McNamara, 2005; Neely, 1991). Accord-
ing to the spreading activation model, concepts are represented in
semantic memory as nodes in a semantic network which are linked
together, based on a semantic similarity principal. Concepts which
are semantically related are located closer to each other and have
stronger links connecting them. Processing of a concept leads to
the activation of its mental representation. This activation spreads
to all other concepts connected to it, quickly dissipating as the
distance, namely the number of links, or associative steps, in-
creases (Balota & Lorch, 1986; Den-Heyer & Briand, 1986; Mc-
Namara, 1992, 2005; McNamara & Altarriba, 1988). Thus, prim-
ing between a directly related prime and target (e.g., moon - sun)
is greater than priming between an indirectly related prime and
target (e.g., crater - sun). This finding has been interpreted as
decreasing activation over intervening nodes in the semantic net-
work (de Groot, 1983; McNamara, 1992). Computational model-
ing approaches have been applied to provide a plausible neural
model that can account for semantic priming and spreading acti-
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vation (Brunel & Lavigne, 2009; Huber & O’Reilly, 2003; Lavi-
gne, Dumercy, & Darmon, 2011; Lerner, Bentin, & Shriki, 2012;
Lerner & Shriki, 2014; Masson, 1995; Plaut, 1995). In these
models, semantic memory is modeled as a recurrent neural net-
work in which concepts are stored as units of features, or memory
patterns, which form attractors in the network. Relations between
concepts are implemented as correlations of memory patterns,
reflecting the overlap of semantic features. Lerner and Shriki
(2014) proposed such an attractor based model to account for
semantic priming, based on a latching dynamics—activation in the
network “jumps” from one attractor to another due to several
parameters regulating the system (such as attention, strength be-
tween concepts and activation depression mechanisms).

However, these computational models focus on modeling the
mechanisms of semantic priming effects, and not on how the
structure of semantic memory affects such processes. For example,
an important unanswered question that remains is the breadth of
the spreading activation process. As the spreading activation
quickly dissipates over semantic distance, how many steps be-
tween a prime and a target word can this process traverse? We
attempted to address this issue by means of network science.
Network science provides computational tools to examine com-
plex systems, such as semantic memory, representing them as a
graph where nodes (e.g., concepts) are linked to each other ac-
cording to some organization measure (e.g., semantic similarity).
Such analysis allows examining path lengths between concepts in
the network, namely the number of steps traversed from one node
to another. In the current study, we examined whether path length
between words, derived from such a network approach, can be
used as a measure of semantic distance. This is achieved by
examining the effect of path length on behavioral performance in
a semantic relatedness judgment and free- and cued-recall tasks.
Further, we examined how word-pairs, with varying path length
between them are subjectively rated for associative strength. Fi-
nally, we show how this measure outperforms the current conven-
tional computational methods assessing semantic distance, latent
semantic analysis and point wise mutual information, in predicting
participants’ performance.

Semantic Distance and Mediated Priming

Semantic distance is the “shortest path [direct or indirect] be-
tween two nodes” (Collins & Loftus, 1975, p. 412, note 3). As
such, semantic distance can be defined as the number of steps that
intervene between the prime and the target in memory. In a
network model, for example, mane and lion might be directly
separated by a distance of one step, whereas mane and tiger might
be connected only through the mediating word lion and thus
separated by a distance of two steps (McNamara, 1992). Therefore,
one approach to investigate the role of spreading activation in
semantic priming is via mediated priming (Jones & Estes, 2012).
Mediated priming refers to priming for target words that are only
indirectly related in semantic memory (Chwilla & Kolk, 2002;
Jones, 2010, 2012; Jones & Estes, 2012; McNamara, 1992; Mc-
Namara & Altarriba, 1988). In the case of one intervening concept,
the facilitation is referred to as two-step priming (e.g., when the
prime is lion, the target is stripes and the nonpresented mediator is
tiger). In the case of two intervening concepts, the facilitation is
referred to as three-step priming (e.g., when the prime is mane, the

target is stripes and the nonpresented mediators are lion, tiger).
The majority of research in mediated priming focuses on two-step
priming, and is conducted via the lexical-decision task (LDT;
Meyer & Schvaneveldt, 1971). In the LDT, participants are pre-
sented with a target word which is either preceded by a related or
unrelated prime word. The participants are required to decide
whether the target word is a real word or not. Manipulations on the
prime, target, relations between prime and target and other factors
allow delicate examination of semantic priming, in general, and
mediated priming in particular (Jones & Estes, 2012). Only a few
attempts have been made to examine three-step priming (Chwilla
& Kolk, 2002; McNamara, 1992). This is mainly attributable to
difficulties in constructing valid stimulus to study this effect,
where the prime and target do not share any common associate,
which would lead to two-step, instead of three-step, priming (Mc-
Namara & Altarriba, 1988). The scarcity of studies on multistep
priming is unfortunate since empirical examination of the effect of
semantic distance on cognitive processes can shed further light on
these processes and the organization of semantic memory (i.e.,
Lorch, 1982).

Computational Measures of Semantic Distance

To examine the effect of semantic distance on cognitive pro-
cesses such as semantic priming, models representing semantic
memory are needed. In the past two decades, the development of
computational models to represent semantic memory has advanced
rapidly (Jones, Willits, & Dennis, 2015; McRae & Jones, 2013).
One main family of computational models that have been devel-
oped to model semantic representations are distributional models,
which share in common the distributional hypothesis (Harris,
1970). This hypothesis states that words that appear in similar
linguistic contexts are likely to have related meanings (Jones et al.,
2015; McRae & Jones, 2013). In recent years a large number of
corpus-based methods have been developed (Mandera, Keuleers,
& Brysbaert, 2017). These methods differ in terms of how they
define a word’s context (e.g., the paragraph, the document), the
extent to which they use grammatical information (e.g., word
order), and how the meaning is represented (e.g., latent spaces,
mixture models). One leading distributional model that has been
used to extract semantic distance is Latent Semantic Analysis
(LSA; Landauer & Dumais, 1997; Landauer, Foltz, & Laham,
1998). LSA quantifies the semantic similarity between words in a
given semantic space by determining the probability of a given
word co-occurring in a specific context (e.g., a paragraph of a
document). LSA has been empirically applied to examine semantic
similarity, semantic priming, memory and creativity (Beaty, Silvia,
Nusbaum, Jauk, & Benedek, 2014; Chwilla & Kolk, 2002; Coane
& Balota, 2011; Green, 2016; Griffiths, Steyvers, & Firl, 2007;
Howard & Kahana, 2002; Jones & Golonka, 2012; Pakhomov et
al., 2010; Prabhakaran, Green, & Gray, 2014; Steyvers, Shiffrin, &
Nelson, 2004). Chwilla and Kolk, for example, examined three-
step priming with LSA analysis (Chwilla & Kolk, 2002). The
authors show the fruitfulness of using LSA to examine more subtle
differences in semantic relations between words. The results of this
study suggest that LSA can be used as a method to assess semantic
distance between words (Chwilla & Kolk, 2002).

However, objections have been raised at the validity of this
approach as a measure of semantic distance and in predicting

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

1471SEMANTIC DISTANCE TASK



semantic priming (Hutchison et al., 2008; Mandera, Keuleers, &
Brysbaert, 2015; Recchia & Jones, 2009; Simmons & Estes, 2006).
Hutchison et al. (2008) examined whether LSA can predict seman-
tic priming in a lexical decision and a naming task, in both short
and long SOAs. The results of this study revealed that LSA did not
predict priming effects in neither task or SOA. Research has
indicated that performance of such models strongly depends on the
choice and scope of the text corpus used, which can become the
determining factor in how well such models capture human per-
formance (Recchia & Jones, 2009). Further, it is yet to be deter-
mined the validity of estimating semantic distance based on anal-
ysis of textual corpora, as opposed to using free associations (De
Deyne, Kenett, Anaki, Faust, & Navarro, 2016; De Deyne, Ver-
heyen, & Storms, 2016).

An alternative computational method to measure semantic dis-
tance is based on Pointwise Mutual Information (PMI; Church &
Hanks, 1990; Paperno, Marelli, Tentori, & Baroni, 2014; Recchia
& Jones, 2009). PMI measures the ratio between the probability of
observing word x and word y together (their joint probability) and
the probability of observing word x and word y independently
(Church & Hanks, 1990). It has been shown to yield high perfor-
mance on forced-choice tests of semantic similarity (Budiu, Royer,
& Pirolli, 2007; Bullinaria & Levy, 2007; Terra & Clarke, 2003;
Turney, 2001). However, to the best of our knowledge currently
only one study examined how PMI predicts semantic relatedness
judgments (Recchia & Jones, 2009). This study demonstrated how
a PMI measure trained on Wikipedia corpora outperformed several
publically available measures of semantic relatedness (Recchia &
Jones, 2009). However, similar to LSA, PMI is also highly depen-
dent on the type and size of the training corpora. Furthermore, the
validity of using such a measure based on textual corpora is still
debated (De Deyne, Kenett, et al., 2016; De Deyne, Verheyen, et
al., 2016).

Measuring Semantic Distance as Path Length in a
Semantic Network

A new and different computational approach to assess semantic
distance is to analyze the structure of semantic memory with
network science tools. Network science is based on mathematical
graph theory, providing quantitative methods to investigate com-
plex systems as networks (Baronchelli, Ferrer-i-Cancho, Pastor-
Satorras, Chater, & Christiansen, 2013; Boccaletti, Latora,
Moreno, Chavez, & Hwang, 2006; Borge-Holthoefer & Arenas,
2010b). A network comprises a set of nodes, which represent the
basic unit of the system (e.g., semantic memory) and links, or
edges, that signify the relations between them (e.g., semantic
similarity). Thus, network science applied at the cognitive level
can directly and quantitatively examine classic cognitive theory on
language and memory being structured as networks (Baronchelli et
al., 2013).

A growing body of research uses network science tools at the
cognitive level to investigate the structure of language and mem-
ory (Baronchelli et al., 2013; Borge-Holthoefer & Arenas, 2010b;
De Deyne, Kenett, et al., 2016; Karuza, Thompson-Schill, &
Bassett, 2016). For example, network science in cognitive science
has enabled the direct examination of the theory that high creative
individuals have a more flexible semantic memory structure
(Kenett, Anaki, & Faust, 2014; Kenett, Beaty, Silvia, Anaki, &

Faust, 2016), identified mechanisms of language development
through preferential attachment (Hills, Maouene, Maouene, Sheya,
& Smith, 2009; Steyvers & Tenenbaum, 2005), have shown how
specific semantic memory network parameters influence memory
retrieval (Vitevitch, Chan, & Goldstein, 2014; Vitevitch, Chan, &
Roodenrys, 2012; Vitevitch, Goldstein, & Johnson, 2016), and
provided new insight on the structure of semantic network of
second language in bilinguals (Borodkin, Kenett, Faust, & Mashal,
2016). More recently network science at the cognitive level has
been applied to examine atypical thought processes exhibited by
clinical populations. Such research is shedding new quantitative
light on these populations, such as relating rigidity of thought
expressed in persons with autism to rigid semantic network struc-
ture (Kenett, Gold, & Faust, 2016), quantifying differences in
semantic network related to atypical language development (Beck-
age, Smith, & Hills, 2011; Kenett et al., 2013), and reshaping the
diagnostic definitions of psychopathology (Borsboom & Cramer,
2013; Borsboom, Cramer, Schmittmann, Epskamp, & Waldorp,
2011).

Kenett et al. (2011) have recently introduced a novel approach
to the study of semantic networks. Their approach uses correlation
and network methodologies to define semantic similarity between
concepts in the semantic network. The core idea of this method is
the definition of connections between concepts in the semantic
network as the overlap of associative responses generated to these
concepts (see Cilibrasi & Vitanyi, 2007 for a similar approach).
This notion is in accordance with Collins and Loftus (1975)
definition of semantic similarity, and is thus a cognitive inspired
approach to examine semantic memory structure (Kenett et al.,
2011). Currently, growing evidence points to the strong coupling
between associative and semantic relations (McRae, Khalkahli, &
Hare, 2012). As such, it is plausible to use analysis based on
association data to investigate semantic distance.

One main measure of networks is path length. Path length
represents the amount of steps (nodes being traversed) needed to
be taken between any pair of nodes in the network. As many paths
can exist between two nodes in the network, what is usually
measured is the shortest path between any pair of nodes. Thus,
path length may be related to semantic distance and predict se-
mantic priming effects. This notion, however, has not yet been
examined. Furthermore, network science examines how the struc-
ture of a network influences the dynamic processes operating upon
it (Watts & Strogatz, 1998). In this regard, certain processes might
operate more efficiently on a network with a certain structure
(Faust & Kenett, 2014; Kenett et al., 2014; Schilling, 2005; Vite-
vitch et al., 2014). Thus, path length between concepts, extracted
from network analysis, may be related to other cognitive processes
operating over semantic memory. One such example is research on
false memories, as elicited in the Deese-Roediger-McDermott
paradigm (Gallo, 2006). In this regard, research has shown how
spreading activation and associative structure lead to false mem-
ories (Hutchison & Balota, 2005; Meade, Watson, Balota, &
Roediger III, 2007). Another such example is memory search,
examined with the free-recall task.

Path Length, Semantic Distance, and Free Recall

In the free-recall task, participants study a sequence of individ-
ually presented items. At a later testing stage, they are asked to
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recall as many items they can remember in any order (Kahana,
Howard, & Polyn, 2008). Analyzing the order in which partici-
pants recall list items provides insight into the search processes
operating upon memory. Memory search in free recall is consid-
ered a multiple constrained process. According to this view, the
probability of recalling an item and the order in which these items
are recalled, are influenced by various factors (Polyn, Norman, &
Kahana, 2009). One factor investigated is the effect of a semantic
component on free recall performance. These studies usually use
free association norms to study the effect of semantic memory
structure on the dynamics of free recall. Howard and Kahana
(2002), for example, have shown how semantic distance, measured
with LSA, is related to free recall performance. They found that
closely related words to a recalled word have a high probability to
be recalled as well. However, the use of path length to predict free
recall performance has not yet been investigated. Previous research
using a similar computational approach based on proximity re-
sponses—known as Pathfinder (Schvaneveldt, Dearholt, & Durso,
1988)—has been used to examine performance in serial- and free-
recall (Cooke, Durso, & Schvaneveldt, 1986). This research found
that this method, estimating semantic memory structure, better
facilitates list learning, as exhibited in better serial recall perfor-
mance, and was related to participants responses in a free-recall
task (Cooke et al., 1986). However, to the best of our knowledge,
a more general network account that directly relates memory recall
and semantic priming to path length is lacking.

Current Study

In the current study we examine how path length can be used as
a measure of semantic distance. To examine such hypotheses, we
relied upon a large network analysis of the Hebrew mental lexicon
(Kenett et al., 2011). This study analyzed the organization of
associative responses to 800 cue words in Hebrew, resulting in a
semantic network representing the organization of these words in
the Hebrew mental lexicon. In this network, nodes represent the
800 cue words and links represent semantic relations between cue
words, based on the overlap of associative responses to these cue
words. From this network analysis, a distance matrix is constructed
which represents the shortest amount of steps connecting any pair
of cue words. As such, semantic distance is operationalized as the
shortest path length between a pair of words, as represented in the
distance matrix. To study the effect of path length on semantic
priming, we used a semantic relatedness task. In this task, partic-
ipants are presented with a word-pair and are required to judge
whether the two words are related to each-other or not (Faust &
Lavidor, 2003). This task was chosen to minimize any possible
confounds, such as those found with regard to using the LDT in
mediated priming research (Balota & Lorch, 1986; McNamara &
Altarriba, 1988). Moreover, natural language is focused on
meaning-level integration processes, such as those required in the
semantic relatedness judgment task (Balota & Paul, 1996; Faust &
Lavidor, 2003). Furthermore, recent research on memory retrieval
has shown the relation between semantic relatedness and the
congruity effect (Bein et al., 2015). The congruity effect refers to
better memory performance for items that are presented within a
compatible, rather than incompatible, semantic context (Craik &
Tulving, 1975). In a series of studies, Bein et al. (2015) show how
the congruity effect and semantic relatedness share a common

mechanism, which they claim is related to the structure of the
mental lexicon (see also Epstein, Phillips, & Johnson, 1975;
Mathews, Maples, & Elkins, 1981). In the semantic relatedness
task used here, we manipulated path length between prime and
target words, by choosing word-pairs with varying path lengths
based on the network analysis of Kenett et al. (2011). In a series of
experiments, we examined how long (Experiment 1) and short
(Experiment 2) path lengths are related to behavioral performance
in semantic relatedness judgments and retrieval from memory
tasks (see also De Deyne, Navarro, Perfors, & Storms, 2016 for a
related study). We predicted that short path lengths (i.e., close or
strong semantic relations) would be judged as semantically related
whereas long path lengths (i.e., far or weak semantic relations)
would be considered as unrelated. According to spreading activa-
tion models (Anderson, 1983; Collins & Loftus, 1975), we pre-
dicted slower RT in semantic judgments as path length (distance)
grows. In addition, in line with the relation between spreading
activation and memory retrieval, we examined whether path length
can predict memory retrieval, either by free- (Experiments 1 and 2)
or cued-recall (Experiment 3). In accordance with the spreading
activation model (Collins & Loftus, 1975), we predicted a reduc-
tion in success of recalling of cue words as path length grows.
Finally, we examined the performance of path length, PMI, and
LSA measures in predicting participants’ RT in the semantic
relatedness task and in subjective judgments of the semantic
strength of the word pairs. In accordance with recent comparisons
of textual versus behavioral based networks (De Deyne, Verheyen,
et al., 2016), we predicted that our path length measure of semantic
distance will outperform LSA and PMI in predicting participants
performance (Experiment 4).

Experiment 1

In Experiment 1 we examined whether path length can be used
as a measure of semantic distance. To the best of our knowledge,
this is the first of such an attempt. As such, the relation between
path length and semantic distance is yet to be determined. Thus, in
Experiment 1 we examined relatively long path lengths in a
semantic relatedness judgment and free-recall tasks (see Table 1).
Because of individual differences, in this task there are no correct
and incorrect responses: While one participant may judge a spe-
cific word-pair as related, another might judge it as unrelated. To
examine the validity of this task, we a priori assigned extreme
conditions as related (1-step condition) and unrelated (20-step
condition). We also examined two intermediate path lengths of 5-
and 10- steps between word-pairs. These two intermediate levels
were used to examine the breadth of the spread of activation, and
whether participants will judge these word-pairs as related or as
unrelated. We predicted that directly related word-pairs (1-step)
will have the shortest RT in judging their relatedness and will have
the highest free-recall performance.

Method

Participants. Thirty-eight participants were initially recruited
to Experiment 1. Nine participants were removed due to either low
accuracy rates (�50%) or extremely slow RTs (i.e., average RT
greater than 2.5 standard deviations than the group mean) in the a
priori 1-step condition. Analysis was performed on the remaining
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29 participants (13 males, 16 females; mean age 24.3 (SD � 3.8).
All participants had normal or corrected to normal vision. Partic-
ipants either took part in the experiment for partial fulfillment of
academic credit or were paid an equivalent of 8 USD for their
participation. All participants were dominantly right-handed, with
a mean score of 90 (SD � 9.9) on the Edinburgh Handedness
Inventory (Oldfield, 1971). This experiment was approved by the
Bar-Ilan University institutional review board.

Stimuli and tasks.
The semantic distance task. the semantic distance task (SDT)

is a semantic relatedness judgment task. In this task, subjects are
required to decide whether two words are related to each other or
not. The stimuli were taken from a network analysis of the Hebrew
mental lexicon, which examined the organization of 800 cue words
in the Hebrew mental lexicon (Kenett et al., 2011). This was
achieved by computing the association correlations, namely, the
overlap of associative responses, between each pair of cue words.
The result of this analysis is an 800 � 800 connectivity (adja-
cency) matrix, which denotes the association correlation between
every pair of nodes in the network. This connectivity matrix is
symmetrical and sparse, as each node is only directly connected to
a small amount of other (neighboring) nodes (Kenett et al., 2011).
Because the authors were interested in the global, structural prop-
erties of the Hebrew lexicon semantic network, they binarized the
association correlations so that all weights equal “1” and analyzed
the network as an unweighted, undirected network (Kenett et al.,
2011). As such, a link between a pair of cue words represents a
symmetrical relation between them. From this binarized connec-
tivity matrix, paths can be calculated, based on the amount of
discrete steps needed to be taken from cue word i to cue word j.
Because the network is unweighted and undirected, many paths
can lead from one cue word to another. However, paths between a
pair of nodes in the network is examined based on the shortest path
connecting them (Boccaletti et al., 2006). Based on the connectiv-
ity matrix, a distance matrix can be constructed which denotes the
shortest amount of steps separating cue word i from cue word j in
the network. Word-pairs were then constructed from this distance

matrix, which spans from a distance of 1 to 22 steps separating
nodes in the network. Binarizing the links between words in the
network from their association correlations to a uniform weight (of
“1”) may lead to loss of important information conveyed in the
correlation weights. To control for this possibility, we examined
the average weighted distance between word pairs for all word-
pair conditions constructed. This revealed a similar linear
trend—as the unweighted distance grew, so did the average
weighted distance. Thus, we chose to remain with the more simple
unweighted, binarized distance matrix.

The task consisted of four conditions, each containing 40 word-
pairs – 1-step (word pairs directly connected), 5-step (five steps
separating the word pair), 10-step (10 steps separating the word
pair) and 20-step (20 steps separating the word pair). The 1-step
condition was a priori considered as related word-pairs and the
20-step condition was considered a priori as unrelated word-pairs.
Words were chosen so that a word appeared only once in the
sample, either as a prime or a target (see Table 1 for three
examples in each condition). Words were matched for length,
frequency, and concreteness.

To examine the validity of the stimuli, we examined the corre-
lation between path length and subjective ratings of the associative
strength of the word-pairs. Eleven independent judges judged the
associative strength of the word pairs on a 7-point Likert scale (1
– unrelated to 7 – strongly related). The participants were matched
to the sample of participants in the experiment, but did not take
part in it. Next, we conducted a Pearson correlation analysis
between these two variables. This analysis revealed a significant
negative correlation between associative distance and subjective
judgments of associative strength, r(160) � �.59, p � .01.

Face sex recognition distraction task. A distraction task was
used to separate between the SDT and the free-recall tasks. A
shortened version of the paradigm used in Kenett, Anaki, and
Faust (2015) was used. Participants saw color pictures of natural
faces with neutral expressions, randomly appearing either on the
left or right side of the screen, and had to recognize the sex of the
face by pressing a button. The stimuli for this task comprised of 30
faces, equally divided into male and female.

Free recall. A free recall paradigm was used to examine the
relation between distance and free memory retrieval. After com-
pletion of the distraction task, participants were required to try and
recall as many of the words they could remember, which were
presented to them during the SDT. Participants were instructed to
recall any word they could think of, regardless of whether it was
the prime or the target of a specific word pair. Furthermore, the
participants were encouraged to try and recall as many word pairs
they could. Participants were not aware during the SDT or distrac-
tor task that they will undergo the free-recall task.

Procedure. Participants sat 50 cm from a CRT screen. Both the
SDT and distractor tasks were conducted using the E-prime software
(Schneider, Eschman, & Zuccolotto, 2002). The stimuli were pre-
sented against a black screen. First, the participant completed the
SDT, after being instructed and provided examples of the task. In the
SDT, each trial began with a fixation cross appearing in the center of
the screen for 80 ms. Next, the prime word appeared for 120 ms.
Following the presentation of the prime word, a second fixation cross
appeared in the center of the screen for 80 ms. Finally, the target word
appeared for 120 ms. The participant decided whether the pair of
words were related to each other or not by pressing a button. Partic-

Table 1
An Example of Stimuli Used in Both Experiment 1 (1-, 5-, 10-,
and 20-Step Conditions) and Experiments 2 and 3 (1-, 2-, 3-, 4-,
6-, and 15-Step Conditions) and the Path of Words Connecting
Prime and Target

Distance Path

1-step bus-car
2-step letter-homesick-family
3-step elevator-ladder-Persian lilac-bench
4-step storm-bay-sunset-pale blue-kite
5-step sand-tent-pleasure-excited-happy-joke
6-step cheater-greedy-fortune-coin-pants-linen-carpet

10-step clean-faucet-puddle-coat-sailboat-bay-view-backpack-pleasure-
happy-surprise

15-step swan-daffodil-stem-zucchini-noodle-pot-fed-aid-charity-luxury-
jewel-earlobe-listened-tune-flute-cymbals

20-step clown-laughter-pleasure-tent-dune-bay-sailboat-coat-puddle-water
sprinkler-flowerbed-zucchini-noodle-pot-fed-aid-charity-luxury-
tunnel-cricket-mosquito

Note. Words were translated to English, and prime and target words are
marked in italics.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

1474 KENETT, LEVI, ANAKI, AND FAUST



ipants were instructed to use their right hand to make their decision,
using the index and middle fingers to indicate related and unrelated
decisions. Once the participant pressed the button, the next trial was
immediately initiated. Next, participants completed the distractor task.
For in the face sex recognition distraction task, each trial began with
a fixation cross appearing at the center of the screen for 200 ms. Next,
the stimulus appeared for 120 ms to either the left or right of the center
of the screen, with the inside edge of the stimulus presented 1.5° from
the central fixation point. After the stimulus disappeared, the partic-
ipant was required to judge the sex of the face, by pressing one button
for male and another for female. Once the participant pressed the
button, the next trial was immediately initiated. Finally, participants
completed the free-recall task. For the free-recall task, participants
were instructed to recall as many of the words presented in the SDT
task. Participants were encouraged to try as hard as they could, by
promising monetary rewards for the participant with the first, second
and third highest score in the sample. Participants had 10 minutes for
this task.

Results

Trials in which response time (RT) was lower than 250 ms were
removed. In addition, for each participant, trials which were above
or below 2.5 SD for each condition were also deleted from final
data analysis. To verify the validity of the a priori conditions, we
conducted an item-analysis on the accuracy of the sample to make
the a priori relatedness judgment. Word-pairs for which group
accuracy was lower than 50% were removed from final analysis
(six word-pairs from the 1-step condition and 1 word-pair from the
20-step condition). To determine whether the non a priori condi-
tions should be classified as related or unrelated word-pairs, we
examined the tendency of participants to judge the 5-step and
10-step word-pairs as related or unrelated. This examination re-
vealed that both 5-step (91%) and 10-step (92%) word-pairs are
strongly considered as unrelated word pairs. Thus, these word-
pairs were analyzed as unrelated word pairs.

A Distance (1-step, 5-step, 10-step, and 20-step) repeated measures
ANOVA was conducted to examine the effect of distance on partic-
ipants (p) and item (i) mean SDT RT. RT was analyzed for only
successful trials based on condition classification (a priori and post-
priori), as described above. This analysis revealed a significant main
effect of Distance, Fp(3, 84) � 3.981, p � .011, �2 � .124; Fi(3,
160) � 6.613, p � .001, �2 � .11 (Table 2 and Figure 1a). Post hoc

analyses (corrected for multiple comparisons) revealed that this dif-
ference stems from a significant rise in RT when distance grows from
1- to 5-step (pp � .04 and pi � .001) and a significant reduction in RT
for items when distance grows from 10- to 20-step (pp � .6 and pi �
.01). No significant differences were found when distance grows from
5- to 10-step (pp � .6 and pi � .34).

A distance (1-step, 5-step, 10-step, 20-step) repeated measures
ANOVA was conducted to examine the effect of distance on mean
free recall performance. This analysis was performed on participants
only due to the low number of words recalled. This analysis revealed
a significant main effect of Distance, F(3, 94) � 49.921, p � .01,
�2 � .641 (Table 2 and Figure 1b). Post hoc analyses (corrected for
multiple comparisons) revealed that this difference stems from a
significant difference between the free recall performances of distance
of 1-step compared with all other conditions (all p’s � .01). Similar
independent analyses for recall of only the prime words, target words,
or word pairs revealed similar results.

Discussion

In Experiment 1 we examined the use of path length between
word-pairs as a measure of semantic distance. Relatively long path
lengths were used to examine how they relate to performance on
semantic judgments and free-recall tasks. This was achieved in a
semantic relatedness judgment task where participants had to decide
whether pairs of words are related to each other or not. The word-pairs
were created based on quantitative path lengths (amount of steps
being traversed) taken from a large network analysis of the Hebrew
lexicon (Kenett et al., 2011). A distance matrix was constructed,
representing the shortest amount of steps connecting any pair of the
800 cue words analyzed. Semantic distance was operationalized from
the path length computed in this distance matrix. We used
word-pairs that were either directly related (1-step), separated
by five steps (5-step), separated by 10 steps (10-step), and
separated by 20 steps (20-step). To examine the validity of our
stimuli, we a priori assigned the 1-step word-pair condition as
related and the 20-step word-pair condition as unrelated. Two
intermediate path length conditions (5-step and 10-step) were
also used, and were assigned as unrelated word-pairs post hoc,
based on participants’ performance.

The results show a differential relationship between path length and
RT. A significant slowing down of RT in SDT was found when
moving from processing 1-step to 5-step word-pairs. This prolonged
RT remained relatively constant at 10-step and then significantly
shortened when processing the 20-step word-pairs. Furthermore, we
show how path length is related to performance on free recall word
retrieval. Participants were mainly able to recall 1-step words com-
pared with 5-, 10-, and 20-step word-pairs. Finally, we found that path
length strongly correlated with subjective judgments of associative
strength of the word-pairs. More generally, these results indicate that
the breadth of the spreading activation process when attempting to
relate between two words is bounded by at least five steps. The results
of Experiment 1 provide initial support for using path length as a
measure of semantic distance. However, the results indicate a very
gross difference, between 1-step and all other conditions. Can path
length also be used as a predictor for shorter semantic distances? This
issue was examined in Experiment 2.

Table 2
RT, % of Word-Pairs Judged as Related/Unrelated, and Amount
of Words Successfully Recalled in Free Recall as a Function of
Distance in Experiment 1 (SD in Parentheses)

Distance SDT RT % un/ related Free recall

1-step 699 (141) .11/.89 (.07) 14.14 (7.37)
5-step 792 (284) .91/.09 (.07) 5.38 (3.43)

10-step 802 (262) .92/.08 (.09) 4.38 (2.37)
20-step 758 (244) .92/.08 (.09) 4.41 (3.36)

Note. SDT RT � average RT in ms in SDT task; free recall � average
amount of words recollected; 1-step � word pairs directly linked to each
other; 5-step � word pairs with five steps between them; 10-step � word
pairs with ten steps between them; 20-step � word pairs with twenty steps
between them.
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Experiment 2
The results of Experiment 1 indicated that the breadth of the

spread of activation is at least five steps. Therefore, in Experiment
2 we examined the use of shorter path length (1-, 2-, 3-, and 4-step
distances between word-pairs) to determine a more accurate extent

of activation spread (see Table 1). Furthermore, to replicate the
findings of Experiment 1, we added two additional conditions of 6-
and 15-step word-pairs. Based on the findings of Experiment 1, the
1-step condition was a priori classified as related word-pairs and
the 6- and 15-step conditions were a priori classified as unrelated.

Figure 1. Effect of path length on RT (A) and free recall (B), collapsed from Experiments 1 and 2 (Experiment 1: 1-, 5-,
10-, and 20-step; Experiment 2: 1-, 2-, 3-, 4-, 6-, and 15-step). x axis—the different conditions varying in path length
(distance). y axis—dependent variables, including error bars (RT and mean amount of words recalled in free recall).
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The 2-, 3-, and 4-step conditions were to be assigned as related or
unrelated post hoc. This was achieved by examining whether
participants judged the word-pairs in these conditions as related or
not.

In accordance with the spreading activation model (Balota &
Lorch, 1986; Collins & Loftus, 1975; Den-Heyer & Briand, 1986),
we predicted an increase in RT and a decrease in percentage of
word-pairs judged as related in the SDT, as path length grows until
4 steps. Furthermore, in accordance with our results in Experiment
1, we predicted a drop in RT for the 6- and 15-step word-pairs.
Finally, similar to Experiment 1, we predicted that path length will
be related to free recall performance—as path length grows, suc-
cessful retrieval of cue words diminishes.

Method

Participants. Forty-four participants were initially recruited
to Experiment 2. Five participants were removed because of either
low accuracy rates (�50%) or extremely slow RTs (average RT
greater than 2.5 standard deviations than the group mean) in the a
priori 1-step condition. Analysis was performed on the remaining
39 participants (7 males, 32 females; mean age 22.1 [SD � 3.2]).
All participants had normal or corrected to normal vision. Partic-
ipants either took part in the experiment for partial fulfillment of
academic credit or were paid an equivalent of 8 USD for their
participation. All participants were dominantly right-handed, with
a mean score of 90 (SD � 8.7) on the Edinburgh Handedness
Inventory (Oldfield, 1971). This experiment was approved by the
Bar-Ilan University institutional review board.

Stimuli and tasks. The tasks used were similar to Experiment
1. In this experiment, the SDT consisted of six conditions, each
containing 40 word-pairs – 1-, 2-, 3-, 4-, 6-, and 15-step. The
word-pairs of the 1-step condition were the stimuli used in Exper-
iment 1 and word-pairs removed from analysis in Experiment 1 (6
word-pairs) were replaced with new stimuli. All other conditions
were constructed from Kenett et al. (2011). Words were chosen so
that a word appeared only once in the sample, either as a prime or
a target (see Table 1). Words were matched for length, frequency,
and concreteness. Similar to Experiment 1, a distractor task and a
free recall paradigm were used. The 1-step condition was a priori
considered as related word-pairs and the 6- and 15-step conditions
were considered a priori as unrelated word pairs. Finally, to
examine the validity of our stimuli, we examined the correlation
between path length and subjective ratings of the associative
strength of the word-pairs. Ten independent judges judged the
associative strength of the word pairs in relation to their path
length. The participants were matched to the sample of participants
in the experiment, but did not take part in it. Next, we conducted
a Pearson correlation analysis between these two variables. This
analysis revealed a significant negative correlation between asso-
ciative distance and subjective judgment of associative strength,
r(240) � �.61, p � .01.

Procedure. The procedure of Experiment 2 was similar to that
of Experiment 1. Participants sat 50 cm from a CRT screen. Both
the SDT and distractor tasks were conducted using the E-prime
software (Schneider et al., 2002). After completion of the distrac-
tor task, participants completed the free-recall task. Participants
had 10 minutes for the free-recall task.

Results

Trials in which RT was lower than 250 ms were removed. In
addition, for each participant, trials which were above or below 2.5
SD for each condition were also deleted from final data analysis.
To determine whether the non a priori conditions should be clas-
sified as related or unrelated word-pairs, we examined the ten-
dency of participants to judge the 2-, 3-, and 4-step word-pairs as
related or unrelated. This examination revealed that both 2-step
(69%) and 3-step (64%) word-pairs are more considered as related
word-pairs, whereas the 4-step condition is strongly considered as
unrelated word-pairs (86%). Thus the 2- and 3-step conditions
were analyzed as related word-pairs and the 4-step condition was
analyzed as unrelated word-pairs.

A Distance (1-step, 2-step, 3-step, 4-step, 6-step, and 15-step)
repeated measures ANOVA was conducted to examine the effect
of distance on participants (p) and item (i) mean SDT RT. RT was
analyzed for only successful trials based on condition classifica-
tion (a priori and post-priori), as described above. This analysis
revealed a significant main effect of Distance, Fp(5, 190) �
20.261, p � .01, �2 � .348; Fi(5, 230) � 22.198, p � .001, �2 �
.325 (Table 3 and Figure 1a). Post hoc analyses (corrected for
multiple comparisons) revealed that this difference stemmed from
a significant rise in RT when distance grows from 1- to 2-step step
(pp � .01 and pi � .001), and from 2- to 3-step, step (pp � .03 and
pi � .004). Furthermore, a significant reduction in RT was found
only across participants when distance grows from 3- to 4-step step
(pp � .01 and pi � .4), and both across participants and items when
the distance grows from 4- to 6-step step (pp � .01 and pi � .001).
No significant differences were found when distance grew from 6-
to 15-step step (pp � .2 and pi � .8).

A Distance (1-step, 2-step, 3-step, 4-step, 6-step, and 15-step)
repeated measures ANOVA was conducted to examine the effect
of distance on mean free recall performance. This analysis re-
vealed a significant main effect of Distance, F(5, 190) � 18.462,
p � .01, �2 � .327 (Table 3 and Figure 1b). Post hoc analyses
(corrected for multiple comparisons) revealed that this difference
stems from a linear function relating decline in free recall perfor-
mance related to growing distance: no significant reduction in
successful recall of cue words was found between free recall
performance as distance grew from 1-step to 2-step (p � .2). In

Table 3
RT in the SDT, % of Word-Pairs Judged as Related/Unrelated,
and Amount of Words Successfully Recalled in Free Recall as a
Function of Distance in Experiment 2 (SD in Parentheses)

Distance SDT RT % un/ related Free recall

1-step 704 (169) .09/.91 (.08) 9.79 (5.38)
2-step 870 (239) .31/.69 (.14) 8.74 (5.19)
3-step 930 (275) .36/.64 (.14) 5.31 (4.21)
4-step 844 (253) .86/.14 (.10) 5.38 (3.34)
6-step 793 (241) .95/.05 (.06) 3.56 (4.06)

15-step 770 (258) .97/.03 (.05) 4.77 (3.37)

Note. SDT RT � average RT (in ms) in the semantic distance task; free
recall � average amount of words recollected; 1-step � word pairs directly
linked to each other; 2-step � word pairs with two steps between them;
3-step � word pairs with three steps between them; 4-step � word pairs
with four steps between them; 6-step � word pairs with six steps between
them; 15-step � word pairs with fifteen steps between them.
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contrast, a significant reduction in successful recall of cue words is
found when distance grew from 2-step to 3-step (p � .01). More-
over, no significant reduction in successful recall of cue words was
found when distance grew from 3-step to 4-step (p � .88), while
a significant reduction in successful recall of cue words was found
when distance grew from 4-step to 6-step (p � .02). Finally, a
significant increase in successful recall of cue words was found
when distance grew from 6-step to 15-step (p � .02).

Discussion

In Experiment 2 we examined the effect of short path length on
performance in a semantic relatedness judgment task and free
recall from memory. We used word-pairs that were either directly
related (1-step), or had short path length of 2-, 3-, and 4-steps. As
a control, and based on the findings of Experiment 1, we also
added two longer conditions, 6- and 15-steps. The 1-step condition
was taken from Experiment 1 and a priori assigned as related
word-pairs. The 6- and 15- conditions, based on the findings of
Experiment 1, were a priori assigned as unrelated word-pairs. The
2-, 3-, and 4-step conditions were assigned post hoc, based on
participant’s performance. In this regard, the 2-step (69% related)
and 3-step (64% related) conditions were determined as related
word-pairs, and the 4-step condition was defined as unrelated
word-pairs (86% unrelated).

We found that up to 3-steps word-pairs, as path length grew, RT
increased and the percentage of word-pairs judged as related
decreased. From 4-steps onward, RT decreased and the word-pairs
are dominantly judged as unrelated. Furthermore, we found a
significant negative correlation between the path lengths used in
Experiment 2 and subjective ratings of semantic strength of these
word-pairs. Finally, as path length increased, participants’ success
in free-recalling the words generally decreased (except when path
length increased from 6- to 15-steps). These findings indicate that
the breadth of the spreading activation process may be bounded by
three steps.

Experiment 3

The results of Experiments 1 and 2 revealed that as path length
increases, success in free recall of the words decreased. However,
in general the free recall performance of the participants was low.
As we analyzed the successful recall of the word-pairs, regardless
of whether it was the prime or target word, the highest perfor-
mance for free recall for the 1-step condition was about 20% (14
words out of 80 of 1-step words). This low performance may be
related to the paradigm of the SDT, namely a semantic relatedness
judgment task of word pairs with a large number of words (160 in
Experiment 1 and 240 in Experiment 2). Free recall paradigms are
usually conducted as a single word short list learning phase fol-
lowed by a test phase (Kahana et al., 2008; Polyn et al., 2009).
Thus, in Experiment 3 we aimed to extend the investigation of the
effect of path length on memory retrieval with a different memory
paradigm, via cued recall. Prior research proposes that successful
cued recall is related to the number and strength of preexisting
associative links in semantic memory (Nelson, Schreiber, &
McEvoy, 1992). In a series of studies, Nelson, Bennett, Gee,
Schreiber, and McKinney (1993) demonstrated how cued recall is
affected by set size (amount of associative responses to the cue

word) and interconnectivity (the extent of interconnections be-
tween the associative responses of a cue word). Thus, in the
presence of an external prime word, a target word with a small set
size and high interconnectivity will be more likely to be success-
fully recalled (Nelson et al., 1993). However, both set size and
interconnectivity in these studies are based on frequency of asso-
ciative responses (Nelson, McEvoy, & Schreiber, 2004). From a
network perspective, interconnectivity may be related to the struc-
ture of the network, which shortens path length between a prime
and target word. Thus, the higher this interconnectivity, the shorter
the path length between concepts that are not directly related in the
mental lexicon.

Here we use the same paradigm used in Experiment 1 and 2, but
replaced the free-recall with a cued-recall task. In accordance with
our hypothesis, we predicted that as path length increases, success
in memory retrieval will decrease. Thus, we predicted a similar
pattern in a cued recall task, which will replicate our previous free
recall findings.

Method

Participants. Thirty-four participants were initially recruited
to Experiment 3. Three participants who did not follow the in-
structions were removed. One participant was removed because of
technical issues. One participant was removed because of low
accuracy rate in the a priori 1-step condition. Analysis was per-
formed on the remaining 29 participants (23 males, 6 females;
mean age 23.4 [SD � 2.5]). All participants had normal or cor-
rected to normal vision. Participants either took part in the exper-
iment for partial fulfillment of academic credit or were paid an
equivalent of 8 USD for their participation. All participants were
dominantly right-handed, with a mean score of 84 (SD � 15.3) on
the Edinburgh Handedness Inventory (Oldfield, 1971). This ex-
periment was approved by the Bar-Ilan University institutional
review board.

Stimuli and tasks.
SDT and distractor tasks. The SDT and distractor tasks used

were similar to Experiment 2. In this experiment, the SDT con-
sisted of six conditions, each containing 40 word-pairs – 1-, 2-, 3-,
4-, 6- and 15-step. Based on the findings of Experiment 2, the 1-,
2-, and 3-step condition were a priori classified as related word-
pairs and the 4-, 6-, and 15-step conditions were a priori classified
as unrelated word-pairs.

Cued recall. A cued recall paradigm was used to examine the
relation between associative distance and cued memory retrieval.
The cued recall task was based on the task used by Bein et al.
(2015). After completion of the distraction task, participants were
presented with the prime word from each of the word-pairs and
were required to try and recall the matched target word from that
word-pair.

Procedure. The procedure of Experiment 3 followed the pro-
cedure used in Experiment 2. Participants sat 50 cm from a CRT
screen. Both the SDT and distractor tasks were conducted using
the E-prime software (Schneider et al., 2002). The cued recall task
was conducted using the Presentation software (Neuro- behavioral
Systems, U.S.A., http://www.neurobs.com). In each cued recall
trial, the prime word appeared on the screen for up to six seconds.
During that time, the participant could indicate that he or she
recalled the target word by pressing a key. Once the key indicating
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a successful recall of the target word, the participant entered his or
her response by typing it on the computer and pressed another key
to move on to the next trial.

Results

SDT trials in which RT was lower than 250 ms were removed.
In addition, for each participant, trials which were above or below
2.5 SD for each condition were also deleted from final data
analysis. The responses generated by the participants in the cued
recall task were manually scanned and classified as successful or
unsuccessful retrieved responses.

A Distance (1-, 2-, 3-, 4-, 6-, and 15-step) repeated measures
ANOVA was conducted to examine the effect of distance on
participants (p) and item (i) mean SDT RT. RT was analyzed for
only successful trials based on condition classification (a priori and
post-priori), as described above. This analysis revealed a signifi-
cant main effect of Distance, Fp(5, 140) � 13.3, p � .001,�2 �
.32; Fi(5, 230) � 20.47, p � .001, �2 � .304 (see Table 4). These
results replicate the results of Experiment 2, where RT increases
until 3-steps and then decreases from 4-step onward. Post hoc
analyses (corrected for multiple comparisons) revealed a signifi-
cant increase in RT from 1- to 2-step, (pp � .001 and pi � .001),
and from 2- to 3-step, (pp � .01 and pi � .09). Furthermore, a
significant reduction in RT was found when distance grew from 3-
to 4-step, (pp � .001 and pi � 05). No significant differences were
found when distance grew from 4-step to 6-step and from 6- to
15-step (pp � .6 and pi � .57).

A Distance (1-, 2-, 3-, 4-, 6-, and 15-step) repeated measures
ANOVA was conducted to examine the effect of distance on mean
successful cued recall of target words. This analysis revealed a
significant main effect of Distance, F(5, 140) � 64.7, p � .001,
�2 � .70 (see Table 4). Post hoc analyses (corrected for multiple
comparisons) revealed that this difference stems from a decline in
cued recall performance as path length grows: A significant re-
duction in successful recall of cue words were found between cued
recall performance as distance grew from 1-step to 2-step (p �
.001) and from 2-step to 3-step (p � .001). No significant reduc-

tion in successful recall of cue words was found when distance
grew from 3-step to 4-step (p � .61) while a significant reduction
was found when distance grew from 4-step to 6-step (p � .001).
Finally, no significant reduction in successful recall of cue words
was found when distance grew from 6-step to 15-step (p � .84).

Discussion

In Experiment 3 we replicated and generalized our findings on
the effect of path length on memory retrieval. This was achieved
by conducting a cued-recall, rather than a free-recall, memory
retrieval task. Cued-recall is better suited to examine memory
recall in word-pairs and has been related to theoretical semantic
memory network properties such as set size and interconnectivity
(Nelson et al., 1993; Nelson et al., 1992). Similar to Experiment 2,
we found a significant effect of path on RT in the SDT: Up to 3
steps separating between word-pairs, participants exhibit increased
RT and a decrease in the percentage of word-pairs judged as
related. From 4 steps onward, participants exhibit a decrease in RT
and judge the majority of word-pairs as unrelated.

The results of the cued-recall task replicate the free-recall results
of Experiment 2: As path length increases, the percentage of target
words successfully recalled from memory decreases. Experiment 3
also replicates a surprising finding from Experiment 2 regarding
the 4-step condition: While RT significantly decreases and the
percentage of word-pairs judged as unrelated increases, there is no
significant difference in either free- or cued-recall compared with
the 3-step condition. This may be related to the spreading activa-
tion mechanism and requires further research. Thus, the results of
Experiment 3 replicates and extends the findings of Experiment 1
and 2 on the relation between path length and successful retrieval
from memory. Our findings from both free- (Experiments 1 and 2)
and cued- (Experiment 3) recall from memory illustrate the general
effect of path length on memory retrieval.

The results presented so far in Experiments 1–3 demonstrate the
effect of long and short path lengths on semantic relatedness
judgments and retrieval from memory. Thus, path length can be
used as a measure of semantic distance. However, to argue that this
method offers an alternative to the conventional LSA approach, a
comparison of the ability of both LSA and path length to predict
participants’ performance in the SDT is required. This was exam-
ined in Experiment 4.

Experiment 4

To truly demonstrate how path length can be used as a measure
of semantic distance, a comparison with LSA is required. Such a
comparison is especially important due to the debate on the use of
LSA in studying cognition. On one hand, LSA has been empiri-
cally applied to examine semantic priming, memory retrieval and
creativity (Beaty et al., 2014; Green, 2016; Howard & Kahana,
2002; Jones & Golonka, 2012). On the other hand, objections have
been made that LSA does not truly capture human performance
(Hutchison et al., 2008; Recchia & Jones, 2009; Simmons & Estes,
2006), and recent research has found that semantic networks
derived from free associations is more valid than semantic net-
works derived from textual-corpora, LSA approach (De Deyne,
Verheyen, et al., 2016).

However, conducting LSA in Hebrew is a computational chal-
lenge. The rich morphology inherent in the Hebrew language poses

Table 4
RT in the SDT, % of Word-Pairs Judged as Related/Unrelated,
and Percentage of Words Successfully Recalled in Cued Recall
as a Function of the Distance in Experiment 3 (SD in
Parentheses)

Distance SDT RT % un/ related % CR

1-step 620 (117) .15/.85 (.11) .30 (.17)
2-step 739 (179) .42/.58 (.17) .25 (.16)
3-step 844 (313) .27/.73 (.13) .11 (.10)
4-step 681 (204) .84/.16 (.09) .12 (.09)
6-step 654 (179) .96/.04 (.04) .04 (.06)

15-step 639 (179) .96/.04 (.04) .05 (.06)

Note. SDT RT � average RT (in ms) in the semantic distance task; %
un/related � percentage of word-pairs judged as un/related in the SDT; %
CR � percentage of successful recognition in the cued recall task. 1-step �
word pairs directly linked to each other; 2-step � word pairs with two steps
between them; 3-step � word pairs with three steps between them;
4-step � word pairs with four steps between them; 6-step � word pairs
with six steps between them; 15-step � word pairs with fifteen steps
between them.
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a problem in the case of word-count based models such as LSA.
For one, the agglomerative nature of the language means that the
same lexeme (a basic semantic unit) can be represented by a large
number of strings. For example, the Hebrew language has seven
inseparable prepositions, which are one-letter prefixes that can be
added to words for various purposes. To complicate things further,
most of these may also be combined, creating dozens of possible
complex prefixes. In addition, many forms of suffixes exist in
Hebrew, as well as other complex morphological phenomena.
Consequently, in contrast to English, where stemming is generally
deemed unnecessary, some sort of leximization is required in
Hebrew for the model to be efficient. In Cohen, Ben-Simon, and
Levi (2014)—the only work on LSA in Hebrew we are aware
of—lexeme representations (produced by a morphological disam-
biguator) were used instead of strings, stripping the words of
prefixes, suffixes, temporal properties and so forth. Here, we
followed the same procedure applied by Cohen and colleagues.

We also compared our path length results to another word
similarity measure popular in the natural language processing
community—positive pointwise mutual information (PPMI; Bul-
linaria & Levy, 2007; Niwa & Nitta, 1994). This is a variant of
pointwise mutual information (PMI), an information-theory based
similarity measure (Church & Hanks, 1990; Paperno et al., 2014).
PMI has been shown to outperform LSA in predicting human
responses in semantic similarity judgments, similar to the SDT
(Mandera et al., 2015, 2017; Recchia & Jones, 2009). Its main
advantage is being based solely on statistics and does not require
any complex algorithms or parameter choices to compute. In
PPMI, negative values are transformed to zero, preserving only
positive values (Mandera et al., 2017). This variation better ac-
counts for computational measures of word similarity, which are
larger or equal to zero (either have some similarity or not).

Here we use a similar approach to the one applied by Cohen et
al. (2014) to compute LSA values for the 346 word-pairs used in
Experiment 1 and Experiment 2 (after item exclusion). Further-
more, we computed the PPMI scores for these word-pairs. This
allows us to compare the performance of our path-length measure
of semantic distance with LSA and PPMI values in predicting
participants’ performance in the SDT.

Method

Data. To compare between LSA, PPMI, and path length mea-
sures of semantic distance, we examine how well they correlate
with our RT data for all word pairs used in Experiment 1 and 2
(after item exclusion). Thus, we examine how well LSA, PPMI,
and path length measures correlate with the SDT RT for 346
word-pairs.

Computing Hebrew LSA scores. LSA comprises several
stages. First, a co-occurrence matrix is computed from a given
corpus for a predefined set of contexts (usually the set of docu-
ments or coherent paragraphs comprising the corpus). Then,
weighting methods are applied to the matrix. Next, a low rank
approximation is computed from the matrix (for a predefined
rank). Finally, the similarity between words (or contexts) is com-
puted from the result.

Co-occurrence matrix. Given a corpus, we divide it to a set of
semantic contexts. Common choices are a set of documents which
comprise the corpus (e.g., newspaper articles) or simply coherent

paragraphs. We then count how many times each word in the
lexicon (denoted ‘term’) appears in each one of the contexts. The
result is the co-occurrence matrix, where each context is repre-
sented by a column and each term is represented by a row.

Weighting. To reflect the fact that rarer terms are more infor-
mative, a weighting procedure is applied to each value in the
co-occurrence matrix, consisting of local weighting and global
weighting. A popular choice which has been shown to perform
well (Landauer et al., 1998) is log-entropy weighting, that is,
taking the log of 1 � Mij (local weight) and dividing by the term’s
entropy over the contexts (global weight):

Mij �
log(1 � Mij)

��j Mijlog(Mij)

Low rank approximation. Using reduced-rank Singular Value
Decomposition (SVD), a low rank approximation of the weighted
co-occurrence matrix is computed for a predetermined rank k. The
rationale behind this stage stems from various reasons, which
include reducing corpus noise, unification of similar semantic
dimensions (transferring overly sparse representation to a denser,
compact one), and computation efficiency. There is no known rule
for choosing k; the choice is generally done empirically, where
values in the neighborhood of 300–400 are commonly used.
Sometimes an inherent dimension in the task at hand is a natural
choice (e.g., a known number of clusters in word clustering).

Term similarity. Once we have a vector representation for
each term (the rows of the low rank approximation), we need only
to define a method for measuring the distance between these
vectors. The most commonly used method in this context is the
cosine-similarity (Landauer et al., 1998)—the cosine of the angle
between the two vectors, u and v, computed as:

sim(u, v) � cos(qu,v) � u�v
�u� � �v�

Using this similarity measure, we can measure the similarity
between each pair of terms in our lexicon (as well as between any
pair of contexts in our corpus).

Computing Hebrew PPMI scores. For two random variables
x and y, their PPMI score is defined as:

PPMI(x, y) � max�log P(x, y)
P(x)P(y), 0�

where in our case, x and y are two words (or baseforms), P(x,y) is
the empirical probability of finding x and y in the same context,
and P(x) and P(y) is the empirical probability of encountering x
and y in a given context.

Corpus. We used a corpus of Hebrew Wikipedia articles
supplied to us by the Hebrew Language Project (Cohen & Ben-
Simon, 2011) at the National Institute for Testing and Evaluation
(NITE; https://hlp.nite.org.il/). This corpus was collected on De-
cember 2012 and contains all the existing articles in that time. It
consists of a total of 61,102,234 tokens (words) in 1,220,031
paragraphs comprising 138,327 articles. We also used the project’s
automatic Hebrew morphological disambiguator (Cohen & Ben-
Simon, 2011) to extract a baseform (lemma) representation for
each word in the texts to construct our semantic space over
baseforms instead of strings.
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Results

A co-occurrence matrix was computed for the corpus, using
Wikipedia articles as contexts and baseforms of all the words in
the corpus as the lexicon. Local & global weighting (log-entropy)
was then applied to the resulting matrix, and a low-rank decom-
position was applied to it for various ranks (k � 1000, 900 . . . 100)
using the SVDS function in MATLAB. This was used to compute
LSA similarity scores for every pair of words used in our exper-
iments. Based on previous studies, we transformed the LSA scores
to measures of semantic distance by subtracting the LSA score
from the value of 1 (Beaty et al., 2014; Prabhakaran et al., 2014).
Finally, we calculated the PPMI for every pair of words used in our
experiments, based on the Hebrew Wikipedia corpus, with Wiki-
pedia articles as contexts and baseforms as terms. We then com-
pared how well both the path length measure, the various LSA
measures (full matrix without decomposition and all ranks), and
PPMI measures are related to participants’ performance in the
SDT.

First, we conducted a correlation analysis which included SDT
RT, path length, PPMI, and all LSA variables. Based on the
behavioral findings, this analysis was conducted separately for
short (up to four steps) and long (from four steps) distances. This
analysis revealed that path length was the variable with the stron-
gest correlation with RT, for both short, r(118) � .567, p � .001,
and long, r(228) � �.298, p � .01, distances. PPMI was also
significantly correlated, albeit weaker, with RT, for both short,
r(118) � �.349, p � .01, and long, r(228) � .171, p � .01,
distances. In contrast, none of the LSA measures were signifi-
cantly correlated with RT, for both short and long distances (see
Table 5).

Next, we examined how well these measures correlate with the
subjective strength judgments for each of the word pairs. We
conducted a correlation analysis which included subjective judg-

ments of semantic strength (SJ), path length, PPMI, and all LSA
variables (see Table 5). This analysis found a strong significant
correlation between SJ and path length r(346) � �.543, p � .001
(as described above separately for Experiments 1 and 2). This
analysis also found a medium significant correlation between SJ
and PPMI r(346) � .392, p � .01. Finally, this analysis also found
weak significant correlations between SJ and LSA measures based
on rank of 1000–500 (all ps � .05).

Lastly, we examined how well these variables predict partici-
pants’ performance (RT in the SDT), through a linear regression
analysis (Table 6). To avoid issues of collinearity, we entered the
path length variable and all LSA variables in a stepwise regression.
This resulted in a two-step solution for the short distances, where
path length is included as a significant predictor for the first step,
and PPMI as a significant predictor for the second step. For long
distances, the regression analysis resulted in a one-step solution
where only path length was included as a significant predictor of
RT (Table 6).

Discussion

In Experiment 4 we examined how path length, PPMI, and LSA
measures predict participants’ performance in the SDT. This was
achieved by computing LSA and PPMI scores based on a corpus
of Wikipedia in Hebrew documents (Cohen & Ben-Simon, 2011;
Cohen et al., 2014). We show that path length was the strongest
predictor of participants RT in the SDT, PPMI was a medium
predictor, and LSA did not predict at all participants RT in the
SDT. Examining the correlation between the three different com-
putational measures and subjective judgments of semantic strength
of the word pairs (SJ), we found a strong correlation between path
length and SJ, a medium correlation between PPMI and SJ, and a
weak correlation between LSA and SJ. Finally, a regression anal-
ysis confirmed that path length was the main predictor of RT in the
SDT, while PPMI played a part only in short distances, and LSA
did not play a part at all. This demonstrates the strength of path
length over LSA and PPMI as a measure of semantic distance (see
also De Deyne, Verheyen, et al., 2016).

Despite computing LSA with different ranks, none of the LSA
measures predicted Participants RT in the SDT. This could be a
result of the relation between the word-pairs being more complex
than pure semantic relations. Further, it is possible that the corpus
used, Wikipedia in Hebrew, is not a suitable corpus to use for
computing LSA. Importantly, this is the first LSA research in
Hebrew so we do not have any reference to compare to. Indeed, in
our approach, we have followed as closely as possible the ap-
proach used to compute LSA in English (Landauer & Dumais,
1997; Landauer et al., 1998). Further research in computational
linguistics in Hebrew is needed, such as analyzing alternative
corpuses to compute LSA scores from, and comparing cross-
linguistic LSA models. However, this only strengthens the prob-
lematic bias of the corpus used on computing LSA values (Recchia
& Jones, 2009). Finally, we find weak significant positive corre-
lations between some of the ranks used for computing LSA scores
and subjective judgments of the semantic strength of the word-
pairs. Our results demonstrate that LSA measures do capture
semantic information, but only in a weak way. Thus, our findings
strengthen previous concerns raised against the use of LSA in

Table 5
Correlation Values Between SDT Average RT (Short/long
Distance), Subjective Judgment of Word-Pair Strength, Path
Length, the Different LSA Measures, and PPMI

Variable

SDT RT
Subjective
judgmentShort distances Long distances

Path length .567��� �.298�� �.543��

PPMI �.349�� .171�� .392��

LSA measures
Full .001 .033 �.002
1000 .060 .091 .124�

900 .055 .089 .124�

800 .057 .090 .120�

700 .049 .110 .110�

600 .050 .111 .108�

500 .052 .119 .108�

400 .030 .100 .099
300 .008 .071 .058
200 �.057 .093 .055
100 �.093 .028 .006

Note. SDT RT � average RT (in ms) in the semantic distance task; Path
Length � path length measure; PPMI � positive pointwise mutual infor-
mation; full � Full LSA matrix without rank decomposition; 1000–100 �
different rank decomposition of the LSA matrix.
� p � .05. �� p � .01. ��� p � .001.
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studying issues such as semantic priming or semantic relatedness
tasks (De Deyne, Verheyen, et al., 2016; Hutchison et al., 2008).

In computing our LSA scores, we followed Cohen et al.
(2014)—the only work on LSA in Hebrew we are aware of—as
closely as possible. However, it is important to note that the task
attempted by Cohen et al. (2014) was modeling corpus documents
similarity, which is very different from our task (modeling word
similarity), possibly affecting the parameter choices as well. To
achieve the optimal results from the LSA procedure, it is necessary
to try a very large number of parameter choice combinations.
Because LSA requires performing complex operations on very
large matrices, parameter choice testing is very costly in terms of
computation time. In this work, we tried different values for the
rank k (assuming it would have the largest effect on the results).
We believe that anything more than that would constitute a full
research on Hebrew LSA, which is far beyond the scope of this
work.

As an alternative to LSA measures of semantic distance, we also
computed positive pointwise mutual information (PPMI) a variant
of pointwise mutual information (PMI; Bullinaria & Levy, 2007;
Church & Hanks, 1990; Niwa & Nitta, 1994). PMI has been shown
to outperform LSA methods in corpora based semantic similarity
ratings (Budiu et al., 2007; Bullinaria & Levy, 2007; Terra &
Clarke, 2003; Turney, 2001), and have recently been used to
examine its performance in predicting behavioral semantic simi-
larity judgments (Mandera et al., 2015, 2017; Recchia & Jones,
2009). Our findings provide further support to PMI outperforming
LSA in predicting behavioral performance. However, the path
length measure greatly outperformed the PPMI measure.

General Discussion

In the present study we examined whether path length, calcu-
lated with network science tools, can be used as a measure of
semantic distance. Path length in a semantic network represents the
amount of steps needed to traverse from one word in the network
to the other. Thus, path length may serve as a measure of semantic
distance (Collins & Loftus, 1975). In this study we constructed
word pairs which varied in the path length between them, based on
a large scale network analysis of the Hebrew lexicon (Kenett et al.,
2011). From this analysis, a distance matrix was constructed,
which represented the shortest amount of steps connecting any pair
of words. This distance matrix was used to operationalize semantic

distance, from which the word-pairs were constructed. These
word-pairs were used to examine how path length is related to
behavioral performance in a semantic relatedness task and to free-
and cued-recall from memory. This was examined for both long
and short path lengths (Experiments 1–3).

We found a differential effect of path length on behavioral
performance. As path length increases from 1 to 3 steps, partici-
pants exhibit an increase of RT and a decrease in the percentage of
word-pairs judged as related. From a path length of 4 steps,
participants exhibit a rapid decrease of RT and dominantly judge
the word-pairs as unrelated. We also show a linear effect of path
length on free recall from memory. The larger the path length
between the word-pairs, the harder it was for participants to recall
these words. This effect was further generalized and replicated in
a cued-recall task. Furthermore, examining the validity of the
semantic distance task, we found a strong significant correlation
between path length and subjective judgments of semantic strength
of the word-pairs. In this regard, as path length grows, word-pairs
are judged to have weaker semantic strength between them. Fi-
nally, in Experiment 4, we show how path length as a measure of
semantic distance outperforms LSA and PPMI measures in pre-
dicting participants’ RT in the SDT.

Path Length and Memory Retrieval

Examining growing orders of distance between word pairs can
also be used to examine memory retrieval processes, such as those
taking place in free- and cued- recall from memory (Kahana et al.,
2008; Morton & Polyn, 2016). Research conducted on free recall
from memory usually analyzes the order in which participants
recall list items from memory (Kahana et al., 2008; Polyn et al.,
2009). This analysis provides insights into the search processes
operating in this task. Currently, this task is considered as a
multiply constrained process, influenced by various factors (Polyn
et al., 2009). One main factor extensively investigated is the effect
of a semantic factor on free recall performance. These studies
usually use free association norms to study the effect of semantic
memory structure on the dynamics of free recall (Howard &
Kahana, 2002). However, these studies make basic assumptions
regarding the role of semantic structure in free recall (Morton &
Polyn, 2016; Rao & Howard, 2008; Sirotin, Kimball, & Kahana,
2005). One of these assumptions focus narrowly only on the
semantic relations between the specific items studied in the learn-
ing phase. Another assumption is concerned with the way the
semantic relation between the studied items is determined. Previ-
ous studies have compared LSA and Word Association Space
vectors (Steyvers et al., 2004) as measures of semantic strength in
such computational models of memory retrieval (Morton & Polyn,
2016; Sirotin et al., 2005). These studies have consistently shown
how semantic strength measures, based on word association, better
accounts for participant’s performance in free recall.

Our study contributes to these studies by directly examining the
effect of the structure of semantic memory on free recall. We
found a negative linear relation between path length and free recall
performance. The larger the distance between word-pairs, the
harder it was for participants to recall these words. This was
regardless of whether the words recalled were the prime or target
from the word-pairs. Participants were most successful in recalling
word-pairs with distances of 1- and 2-step, and to a lesser extent,

Table 6
Regression Analysis of the Different Semantic Distance
Variables on Participants’ Performance in the SDT (RT)

Step

Short distances Long distances

�R2 	 �R2 	

Step 1 .32��� .09���

Path length .57��� — .30���

Step 2 .36���

Path length .49���

PPMI .21���

Note. PPMI � positive pointwise mutual information. Step 1: Stepwise;
Step 2: Enter.
��� p � .001.
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of 3-step word-pairs. Notably, although free recall performance
decreased from 4-steps onward, participant’s RT remained gener-
ally constant in judging these word-pairs as unrelated. This indi-
cates dissociation between the effect of path length on semantic
relatedness judgment and free recall. Free recall is sensitive to path
length even in long distances where semantic relatedness is already
indeterminable. Thus, path length can contribute to the research of
the dynamical processes taking place during free recall from
memory. Finally, our results are more generally related to the
effect of semantic memory structure on memory retrieval. Thus,
our measure of semantic distance based on path length may im-
prove computational models of memory retrieval (Morton & Po-
lyn, 2016). Furthermore, our finding on the breadth of semantic
distance can inform and develop these models.

Recently, Bein et al. (2015) examined the effect of preexisting
memory structure on memory retrieval via semantic relatedness
and the congruity effect. The congruity effect is the enhanced
memory performance for items that are presented within a com-
patible, rather than incompatible, semantic context (Craik & Tulv-
ing, 1975). The authors provide evidence that semantic relatedness
and the congruity effect share a common mechanism, which they
claim is related to the structure of semantic memory (see also
Epstein et al., 1975; Mathews et al., 1981). The results of our
research provide support for this view, by relating path length and
semantic relatedness judgments.

Finally, we replicated our findings from free-recall to cued-
recall memory retrieval. Previous studies have demonstrated how
free-recall and cued-recall are attributed to different aspects of
memory retrieval (Guzel & Higham, 2013; Higham & Tam, 2005;
Tulving & Pearlstone, 1966). Participants better retrieve from
memory with cued-recall, performance which improves with list
size. The authors argue that this difference demonstrates the avail-
ability of the memory trace and how the cue facilitates its acces-
sibility (Tulving & Pearlstone, 1966). Thus, cued-recall is consid-
ered to result in stronger memory retrieval than free-recall (Guzel
& Higham, 2013). The fact that both free- and cued-recall tasks
were similarly affected by path length strengthens the validity of
this approach and its generality in regard to memory retrieval from
semantic memory.

Path Length as a Measure of Semantic Distance

To the best of our knowledge, this is the first study to examine
semantic distance based on path length between words in a se-
mantic network. Currently, the main computational method to
derive semantic distance is latent semantic analysis (LSA; Lan-
dauer & Dumais, 1997; Landauer et al., 1998). LSA quantifies the
semantic similarity between words in a given semantic space and
can thus be used to compute semantic distance between words
which can be experimentally manipulated to examine semantic
priming, creativity and memory retrieval (Beaty et al., 2014;
Chwilla & Kolk, 2002; Griffiths et al., 2007; Howard & Kahana,
2002; Hutchison et al., 2008; Pakhomov et al., 2010; Prabhakaran
et al., 2014; Steyvers et al., 2004).

However, objections have been raised at using LSA to examine
the structure of the mental lexicon (De Deyne, Kenett, et al., 2016;
Hutchison et al., 2008; Recchia & Jones, 2009; Simmons & Estes,
2006). For example, Hutchison et al. (2008) have shown that LSA
measures fail at predicting semantic priming effects in both a LDT

and a naming task at the item level. This, regardless of whether the
SOA between prime and target was short or long. The authors
point out that research showing the success of LSA in predicting
semantic priming have done so only for overall priming effects.
Finally, De Deyne, Kenett, et al. (2016) compared a semantic
network derived from textual corpora versus a semantic network
derived from free association data. These authors show how the
textual corpora based network did not predict semantic relatedness
judgments as well as the association-based network (De Deyne,
Verheyen, et al., 2016). The failure of the LSA measures to
successfully predict participants’ RT in the SDT, together with the
weak correlations with the subjective judgments of semantic
strength, strengthens these objections.

As an alternative measure to LSA, we also computed semantic
distance scores using positive pointwise mutual information
(PPMI), a variant of pointwise mutual information (PMI; Bullina-
ria & Levy, 2007; Church & Hanks, 1990; Niwa & Nitta, 1994).
PMI has been shown to outperform LSA methods in corpora-based
semantic similarity ratings (Budiu et al., 2007; Bullinaria & Levy,
2007; Terra & Clarke, 2003; Turney, 2001), and have recently
been applied to predict behavioral semantic similarity judgments
(Mandera et al., 2015, 2017; Recchia & Jones, 2009). Contrary to
LSA, our measure of PPMI had a medium correlation with par-
ticipants RT performance in the SDT and the SJ of the word-pairs.
However, the path length measure strongly outperformed it. Fi-
nally, both path length and PPMI contributed as significant pre-
dictors of RT in short distances, indicating that they may tap into
different components of semantic relations between the word-pairs
used in our studies.

The effect of path length on RT in our study demonstrates the
feasibility of using path length as a measure of semantic distance.
Furthermore, we found a significant correlation between path
length and subjective judgment of semantic strength. This corre-
lation strengthens the validity of using path length to measure
semantic distance. This correlation, coupled with outperforming
the PPMI measure, the SDT RT results, and the inability of the
LSA measures to predict participants’ performance in the SDT and
their weak relations to subjective strength judgments, demonstrate
that using path length to examine semantic distance is a valid
method, sensitive to intermediate levels of semantic distance, and
successful at capturing differences in behavioral performance.

Path Length and Mediated Priming

Even though the notion of semantic distance is fundamental in
various cognitive fields, empirical operationalization of it remains
an open issue. This may be attributable to alternating approaches
to define the principles determining the relations between nodes in
semantic memory, may they be semantic, featural, or associative
(Hutchison, 2003; Jones & Estes, 2012; Lucas, 2000; McNamara,
2005; McNamara & Altarriba, 1988). Collins and Loftus (1975)
defined semantic distance as the “shortest path [direct or indirect]
between two nodes” (Collins & Loftus, 1975, p. 412, note 3).
Thus, semantic distance can be defined as the number of steps that
intervene between the prime and the target in memory. Therefore,
the application of network science to model semantic memory and
the use of path length as a measure of semantic distance appears a
viable approach.
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Currently, the main approach to behaviorally examine semantic
distance and semantic priming is with mediated priming (Chwilla
& Kolk, 2002; Jones, 2012; Jones & Estes, 2012; McNamara,
1992). Mediated priming is usually examined with one mediating
concept between prime and target (not presented to the partici-
pant), also referred to as 2-step priming, and is based on the
spreading activation theory (McNamara, 1992). Some studies have
also used 3-step priming, in which two concepts mediate between
prime and target (not presented to the participant, Chwilla & Kolk,
2002; McNamara, 1992). However, 3-step priming is much harder
to investigate and to the best of our knowledge no studies have
examined higher orders of mediated priming. The SDT provides a
way to examine n-step priming, based on path length (see Siew,
2016 for a similar approach in phonological networks). Our results
provide empirical evidence for the existence of 3-step priming and
initial results for priming effects of higher-order distances.

An alternative account of mediated priming, and more generally
of semantic priming, has been argued on the basis of the
compound-cue account (McKoon & Ratcliff, 1992; Ratcliff &
McKoon, 1981, 1994). According to this account, items processed
by the cognitive system are joined together in short-term memory
to form a compound-cue, with some degree of familiarity that is
based on the associative links between the items in the compound
cue (McKoon & Ratcliff, 1992). Semantic priming according to
this theory is based on the high familiarity of the prime word to the
compound, which is contingent on the task. According to the
compound-cue theory, mediated priming is a result of weak direct
associative links between prime and target, and not via mediating
concepts (McKoon & Ratcliff, 1992). The main criticism of the
compound-cue theory on mediated priming findings—which are
based on the spreading activation theory (McNamara, 2005)—is
that these findings are established via free association norms as a
measure of semantic distance. In this regard, Ratcliff and McKoon
(1994) argue that free association probabilities do not accurately
predict priming effects. Thus, while spreading activation (based on
spread of activation over a semantic network) and compound-cue
(based on familiarity of compound-cue in short term memory)
accounts offer alternative mechanisms for semantic priming, in
both models semantic strength between concepts plays a critical
role. However, they mostly diverge on the use of free association
probabilities as a measure of semantic strength, or distance (Mc-
Namara, 1992, 2005; McNamara & Altarriba, 1988; Ratcliff &
McKoon, 1981, 1994). The approach we take here, of measuring
semantic distance via path length over semantic network, provides
a quantitative measure of semantic distance that may be used to
better address the different mechanisms offered by these two
models. Applying a quantitative method to represent semantic
memory may help differentiate between competing mechanisms
operating on semantic memory structure.

Spreading Activation Boundary and
Individual Differences

The results presented here indicate that the breadth of the
semantic priming spread of activation is 3 steps. From 4 steps
between word-pairs, participants dominantly judge them as unre-
lated (more than 80% for 4-step word pairs and higher afterward).
What might be the cause for this three-step boundary in the ability
to consider two words as related to each other? A partial answer

may arise from the study of navigation in complex networks
(Cohen & Havlin, 2003; Kleinberg, 2000). This research has
shown that the optimal distance scales to the logarithm of the
number of nodes (words) in the network (Kleinberg, 2000), and
also in some real-world networks to the logarithm of this logarithm
(Cohen & Havlin, 2003). The path lengths used in this study were
taken from a large scale network analysis of the Hebrew mental
lexicon (Kenett et al., 2011). This study analyzed a network of 800
Hebrew words. According to this navigation principle, based on
the size of the analyzed network, the optimal distance navigated
should be 2.9 (logarithm of 800), lower than the empirical bound-
ary of three steps.

However, such insights and findings from network science on
network navigation can greatly contribute to shed further light on
cognitive dynamics of processes operating on semantic memory
structure (i.e., relatedness judgment). Further research is needed in
larger semantic networks to replicate and validate this boundary of
three steps and to examine the cognitive constraints that establish
it. Such constraints may be related to research examining con-
straints in memory capacity, which indicates a capacity limit of
approximately three items (Cowan, 2001, 2010). According to
spreading activation models (Anderson, 1983; Anderson & Pirolli,
1984; Collins & Loftus, 1975), the spread of activation dissipates
quickly over semantic distance (Balota & Lorch, 1986; Den-Heyer
& Briand, 1986; Ratcliff & McKoon, 1981). Anderson (Anderson,
1983; Anderson & Pirolli, 1984) has proposed three properties of
the spreading activation mechanism: the total activation spreading
from a node is less than its own activation; activation decreases
exponentially with distance; and activation has an additive effect.
Currently, few studies examine algorithmic realizations of search
processes over semantic networks (Abbott, Austerweil, & Grif-
fiths, 2015; Borge-Holthoefer & Arenas, 2010a; Capitán et al.,
2012; Hills et al., 2015; Kenett & Austerweil, 2016). However,
none of these models take into account the rapid decay of activa-
tion, theorized by Collins and Loftus (1975). Our results indicate
a rapid increase in RT as path length increases until three steps and
then a rapid decrease in RT as distance increases. This trend is
associated with participant’s performance in judging whether word
pairs are related to each other or not. These two properties (dif-
ferential RT and a 3-step boundary) need to be incorporated in any
models examining semantic navigation.

Finally, our results indicate relatively high variance in the per-
formance of judging 2- and 3-step word-pairs. This is apparent
both in the average RT and percentage of judging these word-pairs
as un/related. These findings may indicate that further individual
differences are related to how participant’s judge word-pair relat-
edness. Such factors, for example, may be related to a participants’
general fluid and retrieval abilities, which have also been related to
creative ability (Beaty et al., 2014; Benedek, Jauk, Sommer, Ar-
endasy, & Neubauer, 2014; Kenett, Beaty, et al., 2016; Nusbaum
& Silvia, 2011; Silvia, Beaty, & Nusbaum, 2013). Recently, Faust
and Kenett (2014) proposed a novel theory which relates lexicon
structure to typical and atypical semantic processing (Faust &
Kenett, 2014). According to this theory, different types of lexicon
structure may be related to individual differences. In this regard,
Kenett, Anaki, and Faust (2014) have recently shown a difference
in the organization of semantic memory structure between low and
high creative individuals (Kenett et al., 2014). The semantic mem-
ory structure of high creative individuals was more flexible than
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that of low creative individuals. This flexibility was interpreted by
the authors as facilitating creative processing, such as connecting
between weakly related words in the lexicon (Rossmann & Fink,
2010; Schilling, 2005). These findings provide further support for
how different populations exhibit a different semantic memory
structure which affects processes operating upon this network.

Limitations

A few possible limitations exist in this study. First, while 1-step
word-pairs are a priori considered as directly related, about 10% of
these word-pairs were judged as unrelated. This was unexpected,
as it was assumed that all of these word-pairs would be judged as
related. This might be related to individual differences in how
participants judge what defines relatedness. Further research is
needed to replicate and more closely examine the nature of this
variance. Second, the behavioral results might be affected by the
difference in judging the word-pairs as related (yes) versus unre-
lated (no). However, unlike other semantic tasks, such as the LDT,
where there are correct and incorrect responses, there are no clear
a priori responses in this task. In this regard, when describing the
instructions of the task, it was emphasized to the participant that
there was no right or wrong answer and that they were free to
choose how they saw fit. No direct description of what was
regarded as relatedness was provided, to minimize biasing. Further
research is needed replicating our results with alternative methods
of judging semantic similarity, such as continuous similarity rat-
ings (Benedek et al., 2017), or choosing a word that is the least
similar to two other out of a triplet of words (Connolly, Gleitman,
& Thompson-Schill, 2007). Finally, the use of LSA in this work is
inherently problematic for a few reasons. The procedure has many
parameters with a wide range of possible values, from the choice
of corpus and contexts, to the choice of weighting function com-
binations, the rank k to which the matrix is reduced and the choice
of similarity measure, each of which may have a drastic effect on
the outcome. In addition, distinct properties of the Hebrew lan-
guage, such as its highly morphological nature, requires additional
modifications to the procedure—computing the baseform for each
string in the corpus—possibly further affecting the choice of
parameter values.

Conclusions

In conclusion, in this work we examined whether path length, as
derived from computational analysis of semantic networks, can be
used as a measure of semantic distance. Our results prove the
feasibility of using path length as a measure of semantic distance,
by showing how it affects behavioral performance in a semantic
distance task and free- and cued-recall from memory. We validated
our approach by showing that it strongly correlates with subjective
judgments of associative strength. Finally, we show how our
method outperforms LSA and PPMI measures in predicting the
behavioral RT data in the SDT and subjective judgments of se-
mantic strength. As such, our approach provides a novel alterna-
tive computational method to current methods that derive semantic
distance, such as LSA and PPMI. Our results have a more general
significance by shedding new light on the breadth of spreading
activation and on dynamical processes operating over semantic
memory. As the application of network science tools in cognitive

systems of language and memory develops, understanding of fun-
damental cognitive phenomena will grow. Such understanding will
facilitate new cognitive theory, and also new cognitive tools to
empirically examine such theory.
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