
rather than the infinite array of values
that the output of this function could
take. We might have contributed to
this misunderstanding when claiming
that a field is ‘a quantity that has a
magnitude for each point in space
and time’. We should have clarified that
the magnitude of a PPS measure [53_TD$DIFF][47_TD$DIFF]can
be seen as a specific sample from a
field in the here and now rather than
as a database containing all possible
field values.

There is one further clarification we would
like to make. Although all PPS measures
reflect action value (at least under the
perspective we propose), not all action
values are reflected in PPS measures.
The opinion of Noel and Serino about this
issue is unclear because their title states
that ‘high action values occur near the
body', implying that, for any type of
action, action values can only be high
when an object is near the body.
However, they later specifically refer to
contact creation/avoidance actions,
implying that their title holds true only
for this type of action. To be explicitly
clear: our claim was that PPS measures
reflect the value of only those actions
which create or avoid contact with the
body, and therefore are in part dependent
on proximity to the body. There certainly
are, however, action values which do not
depend on body proximity. After all, it is
undeniable that non-contact actions can
be valuable, and that their value does not
necessarily have anything to do with
proximity: merely imagine tracking a
distant cloud with your head to gather
information about future storms.
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A Semantic Network
Cartography of the
Creative Mind
Yoed N. Kenett1,* and
Miriam Faust2,3

The role of semantic memory in
creativity is theoretically assumed,
but far from understood. In recent
years, computational network sci-
ence tools have been applied to
investigate this role. These studies
shed unique quantitative insights
on the role of semantic memory
structure in creativity, via mea-
sures of connectivity, distance,
and structure.

What do we need to know to have crea-
tive ideas? Embedded in theories on cre-
ativity is the notion that knowledge plays a
role in one’s ability to generate creative
ideas. The main theory relating creative
thinking to semantic memory – the mem-
ory system that stores concepts and facts
– is the associative theory of creativity [1].
According to this theory, creativity
involves the connection of weakly related,
remote concepts into novel and
Tre
applicable concepts. The farther apart
the concepts are, the more creative the
new combination will be. For this new
combination to be applicable – to make
sense – a broad enough body of knowl-
edge is required. Thus, the structure of
semantic memory plays an important role
in the creative process. Furthermore, this
theory argues that low and high creative
individuals differ in their structure of
semantic memory, with high creative indi-
viduals having a structure that facilitates
such a process [1]. However, this theory
has been challenging to investigate due to
the complexity of modeling and repre-
senting semantic memory, which would
allow examination of this theory. Recently,
computational methods to study knowl-
edge and memory structure in creativity
are paving the way to uniquely examine
their role in the creative process [2–4] and
examine the associative theory of creativ-
ity [1]. Here, we outline one such
approach, based on the application of
network science methodologies [5].

Network science is based on mathemati-
cal graph theory, providing quantitative
methods to investigate complex systems
as networks [5,6]. A network is comprised
of nodes that represent the basic units of
a system (semantic memory) and edges
that signify the relations between them
(semantic similarity). While the application
of network science methodologies has
become a popular approach to study
brain structure and function [7], it has
been used to study cognitive phenomena
to a lesser extent. This is despite classic
cognitive theory in language and memory
being highly related to a network perspec-
tive [5,6,8]. By structuring memory as a
network [5], network science can directly
and quantitatively examine classic cogni-
tive theory and the operations of cognitive
processes such as those taking place
during memory retrieval and associative
thought [8]. Such an approach provides
powerful quantitative methods to exam-
ine the structure and dynamics of
nds in Cognitive Sciences, April 2019, Vol. 23, No. 4 271
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Figure 1. Examples of Main Network Measures Being Applied to Examine the Role of Semantic
Memory in Creativity: Connectivity: The clustering coefficient of a network measures the extent to which two
neighbors of a node in a network will themselves be neighbors (i.e., a neighbor is a node i that is connected
through an edge to node j). Distances: the average shortest path length of a network measures the average
shortest number of steps needed to be taken between any two pair of nodes in the network. Communities: The
modularity measure of the network measures the extent to which the network can be partitioned into smaller
sub-communities. Adapted from [7].
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Figure 2. Examples of Different Applications of Network Science Methodologies to Study the Ro
structure: the semantic networks of high creative individuals exhibit overall higher connectivity, lower distances
Both networks are composed from free association response generated to the same 96 nodes (concepts) and
pairs of nodes. Adapted from [9]. (B) Search processes: high creative individuals generate thoughts that aremore
than low creative individuals (green). This is measured via an accumulative measure of a textual corpora based co
between chained associates generated by the participant. X axis – thought number; Y axis – forward flow score.
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compared to the LSC semantic network. Thus, the semantic network of the HSC group is more flexible than the L
being removed; Y axis – number of nodes that stay connected in the giant component. Adapted from [13].
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complex systems, quantitatively opera-
tionalizing issues of connectivity, distan-
ces, and community structure in such
systems (Figure 1) [7].

A growing number of studies have
recently applied network science meth-
odologies to study creativity, focusing on
the role of semantic memory structure in
the creative process. By briefly describing
these studies, we aim to highlight the
strength of applying network science to
study high-level cognitive constructs such
High crea�ve
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as creative thinking, and the unique
empirical and theoretical insights these
applications reveal.

Memory Structure
A recent study applied network science
methods to directly investigate the asso-
ciative theory of creativity [9]. In accor-
dance with [8], the semantic networks
of 96 cue words in groups of low and
high creative individuals were estimated
and compared. This was achieved using a
continuous free association task (in 1 min
generate all the responses you can think
of) to the cuewords. Edges between pairs
of nodes were computed based on the
overlap of the associative responses gen-
erated to them [8,9]. This analysis
revealed that the semantic network of
high creative individuals had higher con-
nectivity, shorter distances between con-
cepts, and fewer subcommunities in their
network than low creative individuals
(Figure 2A). The authors interpreted their
findings as facilitating more efficient
spread of information in the semantic net-
work of high creative individuals, related
to enhanced ability in connecting remote
associations. However, by aggregating
individuals into low and high creative
groups [9], individual differences in
semantic memory structure as related
to creativity may be obscured. To address
this issue, a novel method was developed
to represent individual semantic networks
based on semantic judgment ratings, and
related these individual semantic net-
works to individual differences in creative
ability [10]. The authors partially replicated
the group-based findings of [9], finding a
positive relation with connectivity, a neg-
ative relation with distance, and a trending
negative relation with community mea-
sures of individual semantic networks
and creativity. Thus, while further
research is needed, network science
methodologies are slowly elucidating
the role of semantic memory structure
in creativity, both at the group [9] and
individual [10] levels.
Search Processes
Another prediction of the associative
theory of creativity is that high creative
individuals can reach further and weaker
concepts while searching their memory
[1]. This issue was investigated by simu-
lating and comparing random walk mod-
els on the semantic networks of low and
high creative individuals [11]. Starting at
a particular node, a random walk moves
to the next node according to a transition
probability matrix. The authors hypothe-
sized that the structure of the semantic
network of high creative compared with
low creative individuals enables them to
use simple search processes that reach
further and weaker connected concepts.
The authors computed two ‘creative
measures’ of the random walk simula-
tions: the amount of unique visited
nodes by the walk, as a measure of
the breadth of the search; and the simi-
larity between initial and final visited
nodes, as a measure of the distance
between connected concepts. In line
with the associative theory of creativity,
the authors found that random walks
over the semantic network of high crea-
tive individuals visits more unique and
weaker nodes.

A recent relevant study developed a
method to quantify ‘streams of thought’
and examine how it tracks individual differ-
ences increativeability [12].Thismeasure–
forward flow – uses co-occurrence statis-
tics of words in textual corpora (www.
forwardflow.org) to compute the semantic
distance between associative responses
generated by participants in a chained free
association task. In a series of studies, the
authors show how this measure was posi-
tively correlated with individual differences
ofcreativity acrossdifferentgroups, includ-
ing performance majors, professional
actors, and entrepreneurs. Importantly, in
accordance with the associative theory of
creativity, the authors found that high cre-
ative individuals reach farther distances
than low creative individuals (Figure 2B).
Tre
This study provides empirical support to
the findings of [11], and further quantitative
empirical evidence relating individual differ-
ences in semantic memory structure and
creative ability.

Flexibility
A third line of prediction by the associa-
tive theory of creativity is that higher cre-
ative individuals have a more flexible
memory structure [1]. However, currently
flexibility in creativity is studied only
through indirect behavioral means [13].
A recent study proposed a quantitative
operationalization of flexibility of memory
structure, based on percolation theory
[13]. Percolation theory examines the
robustness of complex systems to tar-
geted attacks or random failures, based
on the notion that the greater the robust-
ness of the system, the more flexible it is
[13]. Thus, the higher the robustness of a
semantic network to attack, the higher its
flexibility. This study found that the
semantic network of high creative indi-
viduals is more robust to network perco-
lation, as exhibited by a higher
robustness as indicated by a slower
breaking of their network (Figure 2C).
Importantly, the authors show how the
difference in robustness between the
two groups is uniquely related to differ-
ences in the structure of their semantic
networks. Thus, this study further sup-
ports the associative theory of creativity,
by quantitatively linking creativity, flexibil-
ity and semantic memory.

Concluding Remarks
Our aim here was to highlight the strength
of applying network science methodolo-
gies to study high-level cognitive con-
structs, by reviewing recent cognitive
network research on the role of semantic
memory in creativity. These studies quan-
titatively show how the semantic memory
structure of high creative individuals is
more connected and more flexible, allow-
ing for broader search over such a
semantic network structure.
nds in Cognitive Sciences, April 2019, Vol. 23, No. 4 273
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Theapplicationof network science tostudy
cognitive phenomena is slowly developing,
providing quantitative means to study the
structure and dynamics of cognitive sys-
tems. Such an approach is especially rele-
vant in studying aspects of memory and
language [8]. However, it is important to
acknowledge a critical open debate on
whether semantic networks can be investi-
gated independently from the retrieval pro-
cesses taking place in producing the
behavioral output used to estimate the
semanticnetworks [5,14]. Tostudyseman-
tic memory structure and how it may relate
to higher-level cognition, future studies
mustdevelopmethods todisentangle such
retrieval processes from structure [5].

In closing, network neuroscience meth-
odologies have greatly advanced our
understanding of brain structure and
dynamics. Similarly, such applications at
the cognitive level allows directly examin-
ing, expanding and evolving classic cog-
nitive theories, grounding these theories
in quantitative measures in the process.
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Forum
A Dopaminergic Basis
for Fear Extinction
Raffael Kalisch,1,2,*
Anna M.V. Gerlicher,3 and
Sevil Duvarci4

It is a joyous relief when an event
we dread fails to materialize. In
fear extinction, the appetitive
nature of an omitted aversive event
is not a mere epiphenomenon but
drives the reduction of fear
responses and the formation of
long-term extinction memories.
Dopamine emerges as key neuro-
biological mediator of these
related processes.
One of the great breakthroughs in the
study of appetitive learning was the
insight that the unexpected occurrence
of a rewarding stimulus is signaled by a
phasic release of dopamine (DA) in the
4

nucleus accumbens (NAcc) from neu-
rons originating in the ventral tegmental
area (VTA) [1]. Specifically, the DA signal
in appetitive learning encodes the
prediction error (PE), or mismatch,
between one’s reward expectation
(usually zero at the beginning of learn-
ing) and the actual reward obtained. The
DAergic PE thereby constitutes the crit-
ical learning signal that allows reward-
contingent neutral stimuli to become
reward predictors, that is, conditioned
stimuli (CSs) that by themselves evoke
reward-anticipatory behaviors [1].

In fear extinction, a CS that was previously
paired with an aversive stimulus (uncon-
ditioned stimulus, US) is repeatedly pre-
sented in the absence of that stimulus,
such that the subject eventually recog-
nizes the CS as safe and ceases produc-
ing conditioned fear responses (CRs).
Hence, extinction constitutes an instance
of new learning, in which the CS is asso-
ciated with information about its safety
(the absence of the US). The PE signal
that drives this learning has, however,
remained elusive. Proponents of the idea
that the appetitive and aversive motiva-
tional systems inhibit each other antago-
nistically have long suspected that the
unexpected omission of an aversive US
in fear extinction effectively is a rewarding
event that activates the appetitive system
and, as a consequence, suppresses the
expression of conditioned fear [2,3]. This
hypothesis has recently received sub-
stantial support by experiments showing
that fear extinction in fruit flies requires the
same distinct population of DA neurons
that also mediates reward, but not fear,
learning [4].

Now, two recent studies in rodents pro-
vide independent evidence suggesting
that a key function of DA neurons in
extinction is to signal when the outcome
is better than expected (there is no US
following the CS) and that this quasi-
appetitive PE signal is required for
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