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Knowledge modelling is a growing field at the fringe of computer science, psychology
and network science [1,2]. This research area aims to build models of knowledge that can
provide interpretable insights starting from data, its associations, commonalities, recurrent
patterns and correlations. Historically, artificial intelligence (AI) contributed vastly to the
field through models like artificial neural networks, e.g., recurrent neural networks or
deep learning, as methods able to extract knowledge and learn from data, cf. [1]. Recent
advancements from fields like network and data science supported the creation of novel
approaches to knowledge modelling, inspired by theoretical frameworks of cognition
and language processing: cognitive networks are mental representations of knowledge
where nodes represent concepts and links indicate conceptual associations, e.g., concepts
sounding similarly or being related according to a given semantic definition, cf. [3,4].

Despite being both referred to as “networks”, artificial neural networks (ANNs)
and cognitive networks (CNs) remain two frameworks that work well in synergy while
remaining distinct. On the one hand, ANNs encapsulate in their network structure latent
correlations in the data, making it difficult to identify what nodes and their interconnections
represent [5]. On the other hand, CNs form one-to-one mappings of knowledge units, e.g.,
nodes represent specific concepts and links map specific types of conceptual associations [4].
Whereas CNs are evidently more interpretable and can be tuned to map specific aspects
of human associative knowledge (e.g., semantic memory structure and its influence over
cognitive traits [6]), CNs also lack the same generalisability and aptitude to learn from
data that ANNs possess, also thanks to training and fine-tuning [5]. Another important
difference is that ANNs focus on prediction by updating weights between layers while
CNs focus on the representation of the complexity of systems via graphs [3,6].

The synergy of these two approaches can open new ways for modelling knowledge
and learning in interpretable ways, able to account also for unseen data [3,6]. For instance,
the structure of CNs can produce novel features that can then power artificial intelligence
techniques inspired by human knowledge, with relevant advancements for natural lan-
guage processing, automatic assessments of personality traits or other phenomena like
emotional distress, as highlighted in all the papers published within this Special Issue (SI).

The current SI reports on recent developments in applying CNs and ANNs for achiev-
ing intelligent systems and data insights. This SI represents a multidisciplinary collection
of 11 contributions using either CNs, ANNs or novel combinations and mainly organised
along the lines of: (i) text processing and social media analysis, (ii) artificial intelligence for
natural language processing and (iii) brain science and cognitive psychology.

Hassani and colleagues [C1] reviewed text mining techniques for understanding
features of texts in large volumes and with the assistance of quantitative AI techniques.
The authors also reviewed cutting-edge methods for understanding text sentiment (va-
lence for psychologists), i.e., pleasantness/displeasure as expressed in language. The
review critically covered the many advances in the field and underlined the need for
novel cognitively-inspired methods, building a bridge between words in texts and ideas in
the mind.
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Stella and colleagues [C2] introduced network-based methods for identifying not only
sentiment but also emotions in social media data. Focusing on the Italian twittersphere in
the aftermath of the first COVID-19 lockdown, the authors reconstructed online stances of
COVID-19 related hashtags and their emotional profiles. Emotional states as complex as
trust, fear and anger were found to surround the same hashtag in different ways, according
to contextual knowledge that was modelled as a cognitive network.

Pano and Kashef [C3] worked on COVID-19 tweets but under the perspective of
monitoring conversations explicitly related to bitcoin. The authors tested 13 strategies
for correlating textual data with bitcoin prices and identified a list of methodological
working assumptions and limitations affecting predictions, showcasing a link between
social discourse and price fluctuations but only in small time spans.

Prakash and colleagues [C4] used human-centred machine learning to predict the
efficacy of treatment out of CNs built from brain data. The authors showed how recurrent
neural networks were able to learn network features and achieve an accuracy of almost 78%
in correctly classifying individuals according to their self-perceived efficacy of treatment.
These findings open the way to novel ways for measuring psychological constructs from
brain data, contributing to bridging the brain and mind aspects of human cognition.

Sermet and Demir [C5] outlined how cognitive, textual and social data might be
combined in the AI pipeline of smart assistants, i.e., AI extracting insights from input
data, predicting trends and managing conversations in natural language. The authors
underlined how their cognitive computing approach enabled reusability and reliability and
also discussed the relevance of their smart assistant in managing COVID-19 health data.

Sboev and colleagues [C6] introduced a context-dependent framework enforcing contextual
semantic features of concepts in texts in an interpretable way and in synergy with pre-existing
transformer networks. The authors’ approach enables natural language processing where
explicit features of language and context are both accessible to experimenters, improving model
interpretability and also performance. Deploying their architecture in medical reports, the
authors report on the importance of contextual features over accurate predictions.

Fatima and colleagues [C7] used network features and recurrent neural networks to
predict psychological constructs, i.e., depression, anxiety and stress. The authors used
emotional recalls and psychometric data to train an AI in spotting depression, anxiety
and stress levels out of word combinations. Their cognitive embedding assessed word
centrality and semantic distance in a network representation of associative knowledge
between 36k English words. The authors validated the AI on a set of suicide notes through
the circumplex model of affect.

Nilsson and colleagues [C8] used CNs to model the mental lexicon of children with
typical development and adolescents with intellectual disabilities. The authors found that
adolescents with intellectual disabilities produced less modular, more clustered and less
spread apart layouts of conceptual associations, clustering concepts more than children
with typical development. The authors also discussed the interpretation of these differences
and the potential role played by context and education.

Dresp-Langley [C9] used network features—related to connectivity, resilience and
information processing—as explorative dimensions for self-organisation, i.e., the ability for
a system to evolve dynamically towards a working conformation. The author showed how
brain networks evolve towards self-organisation while minimising system complexity and
enhancing its resilience and adaptiveness, with implications also for cognitive computing.

Vitevitch and colleagues [C10] used numerical simulations to bridge together CN
structure and language processing. The authors explored three representations of hu-
man memory based on different phonological similarities between concepts. Simulations
showed how activation spreading across network links could account for many effects
observed in empirical experiments about phonotactic knowledge and affecting spoken
word recognition. Their work underlines how cognitive networks can effectively model
and test processes relative to language understanding and use.
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Siew and colleagues [C11] adopted CNs to investigate the presence of stereotypical
socio-cognitive representations of gender roles within Western movies from 1940 to 2019.
The authors used word co-occurrences in movie synopses to capture syntactic relation-
ships and semantic frames, blending natural language processing and cognitive network
science methods. Their analysis identified the prevalence of stereotypical representations
of female characters, being more entrenched in family and romance jargon than male
counterparts. This approach opens new ways to quantify gender stereotypes as represented
in cultural products.

Overall, our SI demonstrates the strengths and great potential of converging network
science, data science, natural language processing, machine learning, and artificial intelli-
gence to study knowledge representation and phenomena. Human knowledge is a complex
system that traditionally was only examined indirectly. The expedited advancement in
computational and analytical methodologies is rapidly advancing our understanding of its
complexity. Our SI is what we hope is just one step forward in such a direction, a direc-
tion that harnesses state-of-the-art computational tools in the quest to better understand
human knowledge.
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